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Generating descriptive text from functional brain images

Francisco Pereifa Greg Detré Matthew Botvinick

Summary Recentwork has shown thatitis possible to take brain imaf@subject acquired while they saw a scene
and reconstruct an approximation of that scene from the ésiadgere we show that it is also possible to gendexte

from brain images. We began with images collected as ppatits read names of objects (e.g., “Apartment”). Without
accessing information about the object viewed for an imtlial image, we were able to generate from it a collection

” o9,

of semantically pertinent words (e.g., "door,” "window”Across images, the sets of words generated overlapped
consistently with those contained in articles about thevaait concepts from the online encyclopedia Wikipedia. The
technique described, if developed further, could offerrapadrtant new tool in building human-computer interfaces

for use in clinical settings.
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Introduction  Over the last decade, functional magnetic resonance irgdfitRIl) has become a primary tool for
identifying the neural correlates of mental activity. Titahally, the aim of fMRI experiments has been to identify
discrete, coherent neuroanatomic regions engaged dyéuifis forms of information processing. More recently, it
has become clear that important information can be exulgoben fMRI by attending instead to broadly distributed
patterns of activation. The application of machine leag@chniques for pattern classificati$thhas enabled impres-
sive feats of “brain reading,” making it possible to infeettlass of object viewed by an experimental participant, to
track the process of memory retrieval, to predict decisammaistakes, or even (controversially) to detect fié$317.

The key step in “brain-reading” applications of fMRI invely classifying brain images into a set of discrete
categories. For example, given a brain image collectechdusingle-word reading, the task might be to decide
which among a set of candidate words triggered the imé&g@&his approach, which continues to be highly fruitful,
has recently benefitted from the application of sophistidamhodels that allow prediction of brain activation patsern
induced by stimuli from outside the initial training Set*.

In a dramatic departure from the standard approach, a setaif secent studies has demonstrated the feasibility of
agenerativeapproach to fMRI decoding. Beginning with fMRI data colledtas participants viewed complex images,
Naselarist® and colleagues constructed entire images that strikireggmbled the original stimuli (see af$g?).
The crucial ingredient in this approach is a generative madach captures the way in which specific aspects of the
stimulus give rise to particular sub-patterns of distrdslbrain activity. Once established, this generative model
then beinverted, in order to synthesize a complex artifact (e.g., a pictin@n a single pattern of brain activity, as
diagrammed in Figure 1.

To date, the generative approach to fMRI decoding has beglredpnly in the visual/pictorial domain, as just
described. In the present work, we extend it to the generatiovritten text. The long-range aspiration is to begin
with a brain image encoding some mental content, and to genéom it a verbal description of that content. In
the present work, we focused on a simplified version of thidlehge: We began with brain images collected during
viewing of single words naming concrete concepts (dause or dog, together with a line drawing of the item named),
and from these attempted to generate text describing theame concept, in the spirit of an encyclopedia entry. The
online encyclopedia Wikipedia served as a gold-standdedarce, against which our text-generation results coeld b
compared. As a further simplification of the problem, wedaléd a step common in machine learning work on text

representatio®? by ignoring syntax and word order, treating texts as simpliections of words.

Figure 1 here
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Approach At the procedural level, our approach followed a set of sta@dogous to those employed by Nasel#tis

and colleagues to reconstruct visual stimuli from fMRI dé&tat tailored to the task of mapping from fMRI to text:

1. Beginning with a corpus of naturalistic images, learn aegative model for them; this represents individual
images as weighted combinations of a set of underlying fdtetors, which were discovered through unsu-
pervised learning. Analogously, our work begins with a cerpf texts (i.e., Wikipedia articles), using this to
parameterize a form of generative model referred to txpi@ model®. This represents individual texts as a

weighted combination of underlying factors or “topics”.

2. The next step is to learn a mapping from each latent fanttré model from Step 1 to a corresponding brain

image, using a training set of brain images

3. Finally, for each image in a new, test set of brain imadesrésults from Step 2 are used to infer a weighting
over latent factors. These are imposed on the generativelnfrodn Step 1, and the model is inverted in order
to map from this latent-factor representation to the oabiepresentational domain. In the work of Nasel&tis
and colleagues, this resulted in a synthetic image. In oukyitresults in a probability distribution over words,

i.e., a probabilistic representation of a text.

Our use of topic models had a dual motivation. First, as gaiver statistical models, topic models support
Bayesian inversion, a critical operation in generative IMiRalysis. Second, it has been suggested that the latent
representations discovered by topic models may bear imposimilarities with human semantic representations
This encourages the idea that the latent factors discovmsréioke topic models in our study would bear a meaningful
relationship to patterns of neural activation carryingasgtual information.

We learned our models on a corpus derived from a set of 350@p¥dia pages, each dealing with a concrete,
imageable concept. As further described in the Methodsmedhe training texts were stripped of closed-class or
function words, and were lemmatized by converting each wwedroot form (e.gpainted becomegpaint). The result
of this training was a representation for each article, eftthrm of a probability distribution over topics, each of wini
itself defined a probability distribution over individuabwds. An illustration is presented in Figure 2A. Each column
in the figure corresponds to a topic, each row to an articlen@lsubset of the articles used), with articles grouped
into general categories, as labeled on the left. Below, thedi shows the ten most highly weighted words for three
topics. The pattern of topic weightings makes clear thatibeel has captured the category structure implicit in the
corpus; through unsupervised learning, several topice higned with specific semantic categories (e.g., topicth wi
the vegetable category). Topic probabilities for all concepts and topiravdistributions can be examined in detail

through a model browser available onlimeti://www.princeton.edu/ ~matthewb/wikipedia ).
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Armed with the topic model, we used ridge regression to éistaa mapping between each topic and a corre-
sponding pattern of brain activation. Our fMRI dataset wasved from an experiment in which participants
viewed word-picture pairs, each indicating a specific cetecobject (see Figure 1). The stimulus set included a total
of 60 objects, corresponding to the Wikipedia articlesudeld in Figure 2A. A representative fMRI image for each
stimulus was constructed by averaging across all imagdscted! during trials where the stimulus was presented (a
subset of voxels was selected for analysis using a reprbifiticicriterion detailed in the Supplementary Informa-
tion). We used the resulting set of 60 images (reserving magies for the test set, as further explained below) as
the prediction targets and the set of topic probabilitiescdbing the corresponding Wikipedia articles as regogssi

inputs.
Figure 2 here

The resulting regression weights effectively represech éapic in terms of dasisimage, or representative pattern
of brain activation. This makes it possible to decomposédiel image for any stimulus object into a set of topic-
specific basis images, with combination weights quantifitime contribution of the relevant topic, as illustrated in
Figure 2B. Critically, because each topic defines a weightiver specific words, the topic weights inferred from an
image can be further translated into an overall probakdisgribution over words. The process can be reversed and
topic probabilities estimated from test brain images, frehich we then produce such a probability distribution over

words. This procedure is described more formally in the $amppntary Information.

Results Text outputs were generated for each of the 60 brain imageé®idataset (when it was in the test set), and
an illustrative example is presented as part of Figure 3. ddia shown are based on brain images collected during
presentation of the stimuéipartment and hammer for one of the participants. The tag clouds shown in the figure
indicate the words most heavily weighted in their respeabiutput distribution. As in this case, text outputs for many
stimuli appeared strikingly well aligned with the presum@tsemantic associations of the stimulus item. Full result

for all 60 concepts are available for inspection onlinigpf//www.princeton.edu/ ~matthewb/wikipedia ).
Figure 3 here

To more objectively evaluate the quality of the text gerentdibr each stimulus, we used a classification task where
the word distributions derived from the brain images fortepair of concepts (test set) were used to match them with
the two corresponding Wikipedia pages. The classificatias done by considering the total probability of all the

words in each Wikipedia article under each probabilityriistion, and selecting the article deemed most probable.
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The idea is illustrated in Figure 3, for the stimapartment andhammer. The text for each of the corresponding
Wikipedia articles is presented in colors that indicatelikedihood ratio for each word, given the fMRI-derived text
for each stimulus. In this case, each output text matched ohosely with the appropriate Wikipedia article. This,
indeed, was the case for the majority of stimulus pairs.sSRtomparable to Figure 3 for all concept pairs are available

online (ttp://www.princeton.edu/ ~matthewb/wikipedia ).
Figure 4 here

Overall classification accuracies for each subject are showigure 4, averaged across model parameterizations
(number of topics) to avoid bias. Results were statisycgtinificant for all subjects, with p-values calculatechgsa
conservative Monte Carlo procedure being less than 0.@&LteeSupplementary Information for more details about
the procedure). As the figure shows, classification perfameavas best when the comparison was between items
belonging to different semantic categories. This indisdat the text outputs for semantically related stimulesg

tended to be quite similar.
Figure 5 here

The pattern of similarity across items is visualized in Fegb, which shows the correlation between the topic
distributions predicted from each pair of stimulus-spedifiain images. The adjacent matrix shows the same corre-
lations for the topic distributions derived from the copesding pair of Wikipedia articles. The close resemblance
between the two matrices indicates that the fMRI-derivatireflected the semantic similarity structure inherenhim t
stimulus set. The high correlations apparent in the Wikigdxsed matrix also indicate a possible explanation f@r th
relatively weak within-category classification perforraamnve obtained, since our text-generation procedure can onl
pick up on distinctions if they are made by the underlyingdapodel. The marginal within-category classification
performance may thus reflect the limited granularity of ayri¢ models, rather than a fixed limitation of the overall

technique.

Discussion The results we have reported show how a generative, muétteaapproach to fMRI image analysis,
recently used to generate visual images, can also be applted problem of generating text from fMRI data. If this
approach can be further developed, it may offer a signifiadwnce over previous efforts to decode patterns of neural
activation into language outputs, either letter-by-ietter word-by-word'®, with potential clinical implications for
conditions such as locked-in syndroife

The present work serves as a proof of concept, subject taderable limitations. In order to simplify the problem,

we focused only on neural representations of concrete tshjelt is therefore an open question how the present
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technique would perform on a wider range of semantic conf€his includes more abstract concepts and relational
representations. However, one can also optimisticallygimadeveloping techniques for fMRI-based text generation
that might take such factors as emotion or even attitudesiatount. A second important simplification was to ignore
word order and grammatical structure. Although this is a/eational step in text-analysis research, a practical ateth
for text generation would clearly require grammatical stiwe to be taken into account. In this regard, it is inténgst

to note that there have been propogafsof approaches to enriching topic model representationshgidering word
dependency and order. Integrating such a modeling apptintzkthe present generative approach to fMRI analysis

might support more transparently meaningful text outputs.

Methods Summary The stimuli in the fMRI study* that originated our dataset were line drawings and noun
labels of 60 concrete objects from 12 semantic categoriitls, swexemplars per category, adapted from an existing
collection?!. The 60 stimulus items were presented six times, randomiyipied in each presentation. Each item
was presented for 3s, followed by a 7s rest period, duringlvparticipants fixated. When an item was presented, the
participant’s task was to think about the properties theit&line subjects participated in the fMRI study. A single
fMRI mean image was created for each of the 360 item presensaty taking the mean of the images collected 4s, 5s,
6s, and 7s after stimulus onset (to account for the delayarh#dmodynamic response). Each image was normalized
by subtracting its mean and dividing by its standard demmtboth across all voxels.

The classification procedure uses two types of optimizgtimlem. The first is learning a set of basis images,
given example images for 58 concepts and their respectpie ppobabilities. This can be decomposed into a set of
independent ridge regression problems, one per voxel,evbiee predicts the values of the voxel across examples
from the respective topic probabilities; the regressicefficients are the values of the basis images at that voxel. Th
second problem is predicting the topic probabilities pnése an example image, given a set of basis images. This
is a linear regression problem where the values of all theelsox an example are predicted by combining the basis
images, using the topic probabilities for that example aséigression coefficients, constrained to be positive amd su
to 1. The Supplementary Information contains more det&itaiaithe study, corpus construction, topic models and

classification procedure.

Methods The stimuli in the fMRI study* that originated our dataset were line drawings and nouridadfe50
concrete objects from 12 semantic categories with 5 exesipkr category, adapted from an existing collectibn
The entire set of 60 stimulus items was presented six tinsggjamly permuting the sequence of the 60 items on
each presentation. Each item was presented for 3s, follwyed7s rest period, during which the participants were

instructed to fixate. When an exemplar was presented, theipant’s task was to think about the properties of
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the object. Nine subjects participated in the fMRI study.nétional images were acquired on a Siemens Allegra
3.0T scanner at the Brain Imaging Research Center of Camégilon University and the University of Pittsburgh
using a gradient echo EPI pulse sequence with TR = 1000 ms, 3&ms and a 60 degree flip angle. Seventeen
5-mm thick oblique-axial slices were imaged with a gap of 1 metween slices. The acquisition matrix was 64 x
64 with 3.125-mm x 3.125-mm x 5-mm voxels. Initial data pregiag was performed using Statistical Parametric
Mapping software (SPM2, Wellcome Department of CognitiveuhMlogy, London, UK). The data were corrected
for slice timing, motion, and linear trend, and were tempigrdtered using a 190s cutoff. The data were spatially
normalized into MNI space and resampled to 3x3x6 mm3 voxEle percent signal change (PSC) relative to the
fixation condition was computed at each voxel for each stimpresentation. A single fMRI mean image was created
for each of the 360 item presentations by taking the mearedaftlages collected 4s, 5s, 6s, and 7s after stimulus onset
(to account for the delay in the hemodynamic response). Bittlese images was normalized by subtracting its mean
and dividing by its standard deviation, both across all \&xe

To derive a corpus from Wikipedia we started with classiisss lof words! 1°, as well as modern revisions/extensions
thereof* 23, and compiled words corresponding to concepts that wermeé&oncrete or imageable, be it because
of their score in one of the lists or through editorial demisiWe then identified the corresponding Wikipedia article
titles (e.g. “airplane” is “Fixed-wing aircraft”) and alsmmpiled related articles which were linked to from thesg.(e
“Aircraft cabin”). If there were words in the original listgith multiple meanings we included the articles for at least
a few of those meanings. We used Wikipedia Extrachtip/medialab.di.unipi.it/wiki/Wikipedia_
extractor ) to remove HTML, wiki formatting and annotations and pra&agsthe resulting text through the morpho-
logical analysis tool Morph& (http://www.informatics.susx.ac.uk/research/groups/n Ip/carroll/
morph.html ) to lemmatize all the words to their basic stems (e.g. “tdtdsted”,"taster” and “tastes” all become the
same word).

The resulting text corpus was processed with topic modgflisoftware bttp://www.cs.princeton.edu/
~ blei/topicmodeling.htm! ) to produce several models, excluding words that appearadingle article or were
in a stopword list. We ran the software varying the numbeiopids allowed from 10 to 100, in increments of 10,
setting thene parameter teﬁ#gics (as suggested in other work modelling a large text corpusedarantic purposes
though a range of multiples of the inverse of the number at®pielded comparable experiment results).

Classification accuracy was measured on the task of matthimgxample images with the two corresponding
wikipedia articles, by considering the probability assidrio the words in each article by the distributions derived

from the example images, as illustrated in Supplementayyreil and described in the following steps:

1. leave out one pair of concepts (e.g. “apartment” and “harinas test set
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2. use the example images for the remaining 58 conceptghtgeith their respective topic probabilities under
the model, as the training set to obtain a set of basis imanyes (000 stable voxels, selected in this training

set)
3. for each of the test concepts (for instance, “apartment”)

e predict the probability of each topic being present from“éyggartment” example image
e obtain an “apartment”-brain probability distribution fibrat combination of topic probabilities

e compute the probability of “apartment” article and “hamirenticle under that distribution, respectively

" "
pa,pm’tnLent(“apartment ) andpapartment(“hammer )

4. assign the article with highest probability to the copaewding test concept, and the other article to the other

concept (this will be correct or incorrect)

The steps are repeated for every possible pair of concepdsthe accuracy is the fraction of the pairs where the
assignment of articles to example images was correct. Balgelection we used a reproducibility criterion, which
identifies voxels whose activation levels across the tngiset examples of each concept bear the same relationship to
each other over epochs (mathematically, the vector ofa&aiv levels across the sorted concepts is highly cormtlate
between epochs). More details are provided in the Supplemneimformation.

The classification procedure has two steps that requirégpbptimization problems. The first is learning a set of
basis images, given example images for 58 concepts anddspiective topic probabilities. This can be decomposed
into a set of independent ridge regression problems, onegxet, where one predicts the values of the voxel across
examples from the respective topic probabilities; the esgiion coefficients are the values of the basis images at
that voxel. The second problem is predicting the topic pbdii#es present in an example image, given a set of basis
images. Thisis a linear regression problem where the valiakthe voxels in an example are predicted by combining
the basis images, using the topic probabilities for thatpla as the regression coefficients (under the constraiht th
the values need to be greater than or equal to 0 and add upgdHeyaare probabilities). More details are provided in

the Supplementary Information.
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Figure Legends

Figure 1

The approach we follow to generate text (bottom) paralleds tised by Naselari§ (top, adapted from that paper),
by having three stages: creating a model of how stimuli véllépresented in the brain, learning how to predict fMRI
data in response to the stimuli, given the model, and invgttie process to make a prediction for fMRI data not used

to fit the model.

Figure 2

A: Topic probabilities for the wikipedia articles about thed&hcepts for which we have fMRI data. Each concept
belongs to one of 12 semantic categories, and concepts avpeyt by category (five animals, five insects, etc).
Note that the category structure visible is due to how weesbtiie columns for display; the model is trained in an
unsupervised manner and knows nothing about categoryisteudNote also that there are topics that are not probable
for any of the concepts, which happens because they are aseth&r concepts in the 3500 concept corpus. Below

this are the top 10 most probable words in the probabilitrithistions associated with three of the topics.

B: The decomposition of the brain image for “House” into a wédghcombination of topic basis images. The
weights allow us to combine the corresponding topic wordrithistions into an overall word distribution (top 10

words shown).

Figure 3

The inset under each article shows the top words from theespanding brain-derived distribution (10 which are
present in the article (black) and 10 which are not (graygchEword of the two articles is colored to reflect the ratio
E%C% between the probabilities assigned to it by the brain-@erdistributions for concepts “apartment”

and “hammer” (red means higher probability under “apartthdriue under “hammer”, gray means the word is not

considered by the text model).

Figure 4

Average classification accuracy across models using 10addiics, for each of 9 subjects (chance level is 0.5); the
accuracy is broken down into classification of concept pahisre concepts are in different categories (“Between”)

and pairs where the category is the same (“Within”). Erroslzaie across numbers of topics.

12



Nature Precedings : hdl:10101/npre.2011.5666.1 : Posted 11 Feb 2011

Figure 5

Similarity between the topic probability representatioh®ach concept learned solely from text (left) and also the
representations predicted from the brain images for eaittopaoncepts, when they were being used as the test set
(right). The latter was obtained from subject 1 and a 40 topaciel, but the general pattern is similar for the other
subjects. Note that the representations for concepts isathme category similar when obtained from brain images but

this is also the case when those representations are démmedext.
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Apartment

An apartment is a self-contained housing unit that
occupies only part of a building. Apartments may
be owned (by an "owner occupier") or rented
(by "tenants"). In the US, some apartment-
dwellers own their own apartments, either as co-
ops, in which the residents own shares of a
corporation that owns the building or
development; or in condominiums, whose
residents own their apartments and share
ownership of the public spaces. Most apartments
are in buildings designed for the purpose, but
large older houses are sometimes divided into

Hammer

A hammer is a tool meant to deliver an impact to an
object. The most common uses are for driving nails,
fitting parts, and breaking up objects. Hammers are
often designed for a specific purpose, and vary widely
in their shape and structure. Usual features are a handle
and a head, with most of the weight in the head. The
basic design is hand-operated, but there are also many
mechanically operated models for heavier uses. The
hammer is a basic tool of many professions, and can
also be used as a weapon. By analogy, the name
""hammer"" has also been used for devices that are

l "apartment” connotes a

cally used for a
window artment landlords, each

desioned to deliver hlows, e.g. in the caplock
. History. The use of simple

build house fion in a building. In some steel hammer 400,000 BCE when various
f the United States, the word tool ked to strike wood, bone, or
design oor type pwned by the building 00 them apart and shape them.

head design rks with strips of leather or
Ing used as hammers by about
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