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Summary Recent work has shown that it is possible to take brain imagesof a subject acquired while they saw a scene

and reconstruct an approximation of that scene from the images. Here we show that it is also possible to generatetext

from brain images. We began with images collected as participants read names of objects (e.g., “Apartment”). Without

accessing information about the object viewed for an individual image, we were able to generate from it a collection

of semantically pertinent words (e.g., ”door,” ”window”).Across images, the sets of words generated overlapped

consistently with those contained in articles about the relevant concepts from the online encyclopedia Wikipedia. The

technique described, if developed further, could offer an important new tool in building human-computer interfaces

for use in clinical settings.
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Introduction Over the last decade, functional magnetic resonance imaging (fMRI) has become a primary tool for

identifying the neural correlates of mental activity. Traditionally, the aim of fMRI experiments has been to identify

discrete, coherent neuroanatomic regions engaged during specific forms of information processing. More recently, it

has become clear that important information can be extracted from fMRI by attending instead to broadly distributed

patterns of activation. The application of machine learning techniques for pattern classification20 has enabled impres-

sive feats of “brain reading,” making it possible to infer the class of object viewed by an experimental participant, to

track the process of memory retrieval, to predict decisionsor mistakes, or even (controversially) to detect lies5 8 13 17.

The key step in “brain-reading” applications of fMRI involves classifying brain images into a set of discrete

categories. For example, given a brain image collected during single-word reading, the task might be to decide

which among a set of candidate words triggered the image13 . This approach, which continues to be highly fruitful,

has recently benefitted from the application of sophisticated models that allow prediction of brain activation patterns

induced by stimuli from outside the initial training set9 14 .

In a dramatic departure from the standard approach, a small set of recent studies has demonstrated the feasibility of

agenerative approach to fMRI decoding. Beginning with fMRI data collected as participants viewed complex images,

Naselaris16 and colleagues constructed entire images that strikingly resembled the original stimuli (see also15 22).

The crucial ingredient in this approach is a generative model, which captures the way in which specific aspects of the

stimulus give rise to particular sub-patterns of distributed brain activity. Once established, this generative modelcan

then beinverted, in order to synthesize a complex artifact (e.g., a picture)from a single pattern of brain activity, as

diagrammed in Figure 1.

To date, the generative approach to fMRI decoding has been applied only in the visual/pictorial domain, as just

described. In the present work, we extend it to the generation of written text. The long-range aspiration is to begin

with a brain image encoding some mental content, and to generate from it a verbal description of that content. In

the present work, we focused on a simplified version of this challenge: We began with brain images collected during

viewing of single words naming concrete concepts (e.g.,house or dog, together with a line drawing of the item named),

and from these attempted to generate text describing the relevant concept, in the spirit of an encyclopedia entry. The

online encyclopedia Wikipedia served as a gold-standard reference, against which our text-generation results could be

compared. As a further simplification of the problem, we followed a step common in machine learning work on text

representation12 by ignoring syntax and word order, treating texts as simple collections of words.

Figure 1 here
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Approach At the procedural level, our approach followed a set of stepsanalogous to those employed by Naselaris16

and colleagues to reconstruct visual stimuli from fMRI data, but tailored to the task of mapping from fMRI to text:

1. Beginning with a corpus of naturalistic images, learn a generative model for them; this represents individual

images as weighted combinations of a set of underlying latent factors, which were discovered through unsu-

pervised learning. Analogously, our work begins with a corpus of texts (i.e., Wikipedia articles), using this to

parameterize a form of generative model referred to as atopic model3 . This represents individual texts as a

weighted combination of underlying factors or “topics”.

2. The next step is to learn a mapping from each latent factor in the model from Step 1 to a corresponding brain

image, using a training set of brain images

3. Finally, for each image in a new, test set of brain images, the results from Step 2 are used to infer a weighting

over latent factors. These are imposed on the generative model from Step 1, and the model is inverted in order

to map from this latent-factor representation to the original representational domain. In the work of Naselaris16

and colleagues, this resulted in a synthetic image. In our work, it results in a probability distribution over words,

i.e., a probabilistic representation of a text.

Our use of topic models had a dual motivation. First, as generative statistical models, topic models support

Bayesian inversion, a critical operation in generative fMRI analysis. Second, it has been suggested that the latent

representations discovered by topic models may bear important similarities with human semantic representations7 .

This encourages the idea that the latent factors discoveredby the topic models in our study would bear a meaningful

relationship to patterns of neural activation carrying conceptual information.

We learned our models on a corpus derived from a set of 3500 Wikipedia pages, each dealing with a concrete,

imageable concept. As further described in the Methods section, the training texts were stripped of closed-class or

function words, and were lemmatized by converting each wordto a root form (e.g.,painted becomespaint). The result

of this training was a representation for each article, in the form of a probability distribution over topics, each of which

itself defined a probability distribution over individual words. An illustration is presented in Figure 2A. Each column

in the figure corresponds to a topic, each row to an article (a small subset of the articles used), with articles grouped

into general categories, as labeled on the left. Below, the figure shows the ten most highly weighted words for three

topics. The pattern of topic weightings makes clear that themodel has captured the category structure implicit in the

corpus; through unsupervised learning, several topics have aligned with specific semantic categories (e.g., topic 1 with

the vegetable category). Topic probabilities for all concepts and topic word distributions can be examined in detail

through a model browser available online (http://www.princeton.edu/ ˜ matthewb/wikipedia ).
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Armed with the topic model, we used ridge regression to establish a mapping between each topic and a corre-

sponding pattern of brain activation. Our fMRI dataset was derived from an experiment14 in which participants

viewed word-picture pairs, each indicating a specific concrete object (see Figure 1). The stimulus set included a total

of 60 objects, corresponding to the Wikipedia articles included in Figure 2A. A representative fMRI image for each

stimulus was constructed by averaging across all images collected during trials where the stimulus was presented (a

subset of voxels was selected for analysis using a reproducibility criterion detailed in the Supplementary Informa-

tion). We used the resulting set of 60 images (reserving two images for the test set, as further explained below) as

the prediction targets and the set of topic probabilities describing the corresponding Wikipedia articles as regression

inputs.

Figure 2 here

The resulting regression weights effectively represent each topic in terms of abasis image, or representative pattern

of brain activation. This makes it possible to decompose thefMRI image for any stimulus object into a set of topic-

specific basis images, with combination weights quantifying the contribution of the relevant topic, as illustrated in

Figure 2B. Critically, because each topic defines a weighting over specific words, the topic weights inferred from an

image can be further translated into an overall probabilitydistribution over words. The process can be reversed and

topic probabilities estimated from test brain images, fromwhich we then produce such a probability distribution over

words. This procedure is described more formally in the Supplementary Information.

Results Text outputs were generated for each of the 60 brain images inthe dataset (when it was in the test set), and

an illustrative example is presented as part of Figure 3. Thedata shown are based on brain images collected during

presentation of the stimuliapartment andhammer for one of the participants. The tag clouds shown in the figure

indicate the words most heavily weighted in their respective output distribution. As in this case, text outputs for many

stimuli appeared strikingly well aligned with the presumptive semantic associations of the stimulus item. Full results

for all 60 concepts are available for inspection online (http://www.princeton.edu/ ˜ matthewb/wikipedia ).

Figure 3 here

To more objectively evaluate the quality of the text generated for each stimulus, we used a classification task where

the word distributions derived from the brain images for each pair of concepts (test set) were used to match them with

the two corresponding Wikipedia pages. The classification was done by considering the total probability of all the

words in each Wikipedia article under each probability distribution, and selecting the article deemed most probable.
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The idea is illustrated in Figure 3, for the stimuliapartment andhammer. The text for each of the corresponding

Wikipedia articles is presented in colors that indicate thelikelihood ratio for each word, given the fMRI-derived text

for each stimulus. In this case, each output text matched most closely with the appropriate Wikipedia article. This,

indeed, was the case for the majority of stimulus pairs. Plots comparable to Figure 3 for all concept pairs are available

online (http://www.princeton.edu/ ˜ matthewb/wikipedia ).

Figure 4 here

Overall classification accuracies for each subject are shown in Figure 4, averaged across model parameterizations

(number of topics) to avoid bias. Results were statistically significant for all subjects, with p-values calculated using a

conservative Monte Carlo procedure being less than 0.01 (see the Supplementary Information for more details about

the procedure). As the figure shows, classification performance was best when the comparison was between items

belonging to different semantic categories. This indicates that the text outputs for semantically related stimulus items

tended to be quite similar.

Figure 5 here

The pattern of similarity across items is visualized in Figure 5, which shows the correlation between the topic

distributions predicted from each pair of stimulus-specific brain images. The adjacent matrix shows the same corre-

lations for the topic distributions derived from the corresponding pair of Wikipedia articles. The close resemblance

between the two matrices indicates that the fMRI-derived text reflected the semantic similarity structure inherent in the

stimulus set. The high correlations apparent in the Wikipedia-based matrix also indicate a possible explanation for the

relatively weak within-category classification performance we obtained, since our text-generation procedure can only

pick up on distinctions if they are made by the underlying topic model. The marginal within-category classification

performance may thus reflect the limited granularity of our topic models, rather than a fixed limitation of the overall

technique.

Discussion The results we have reported show how a generative, multivariate approach to fMRI image analysis,

recently used to generate visual images, can also be appliedto the problem of generating text from fMRI data. If this

approach can be further developed, it may offer a significantadvance over previous efforts to decode patterns of neural

activation into language outputs, either letter-by-letter 2 or word-by-word10 , with potential clinical implications for

conditions such as locked-in syndrome18 .

The present work serves as a proof of concept, subject to considerable limitations. In order to simplify the problem,

we focused only on neural representations of concrete objects. It is therefore an open question how the present

5

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.5
66

6.
1 

: P
os

te
d 

11
 F

eb
 2

01
1



technique would perform on a wider range of semantic content. This includes more abstract concepts and relational

representations. However, one can also optimistically imagine developing techniques for fMRI-based text generation

that might take such factors as emotion or even attitude intoaccount. A second important simplification was to ignore

word order and grammatical structure. Although this is a conventional step in text-analysis research, a practical method

for text generation would clearly require grammatical structure to be taken into account. In this regard, it is interesting

to note that there have been proposals7 24 of approaches to enriching topic model representations by considering word

dependency and order. Integrating such a modeling approachinto the present generative approach to fMRI analysis

might support more transparently meaningful text outputs.

Methods Summary The stimuli in the fMRI study14 that originated our dataset were line drawings and noun

labels of 60 concrete objects from 12 semantic categories, with 5 exemplars per category, adapted from an existing

collection21 . The 60 stimulus items were presented six times, randomly permuted in each presentation. Each item

was presented for 3s, followed by a 7s rest period, during which participants fixated. When an item was presented, the

participant’s task was to think about the properties the item. Nine subjects participated in the fMRI study. A single

fMRI mean image was created for each of the 360 item presentations by taking the mean of the images collected 4s, 5s,

6s, and 7s after stimulus onset (to account for the delay in the hemodynamic response). Each image was normalized

by subtracting its mean and dividing by its standard deviation, both across all voxels.

The classification procedure uses two types of optimizationproblem. The first is learning a set of basis images,

given example images for 58 concepts and their respective topic probabilities. This can be decomposed into a set of

independent ridge regression problems, one per voxel, where one predicts the values of the voxel across examples

from the respective topic probabilities; the regression coefficients are the values of the basis images at that voxel. The

second problem is predicting the topic probabilities present in an example image, given a set of basis images. This

is a linear regression problem where the values of all the voxels in an example are predicted by combining the basis

images, using the topic probabilities for that example as the regression coefficients, constrained to be positive and sum

to 1. The Supplementary Information contains more details about the study, corpus construction, topic models and

classification procedure.

Methods The stimuli in the fMRI study14 that originated our dataset were line drawings and noun labels of 60

concrete objects from 12 semantic categories with 5 exemplars per category, adapted from an existing collection21 .

The entire set of 60 stimulus items was presented six times, randomly permuting the sequence of the 60 items on

each presentation. Each item was presented for 3s, followedby a 7s rest period, during which the participants were

instructed to fixate. When an exemplar was presented, the participant’s task was to think about the properties of
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the object. Nine subjects participated in the fMRI study. Functional images were acquired on a Siemens Allegra

3.0T scanner at the Brain Imaging Research Center of Carnegie Mellon University and the University of Pittsburgh

using a gradient echo EPI pulse sequence with TR = 1000 ms, TE =30 ms and a 60 degree flip angle. Seventeen

5-mm thick oblique-axial slices were imaged with a gap of 1 mmbetween slices. The acquisition matrix was 64 x

64 with 3.125-mm x 3.125-mm x 5-mm voxels. Initial data processing was performed using Statistical Parametric

Mapping software (SPM2, Wellcome Department of Cognitive Neurology, London, UK). The data were corrected

for slice timing, motion, and linear trend, and were temporally filtered using a 190s cutoff. The data were spatially

normalized into MNI space and resampled to 3x3x6 mm3 voxels.The percent signal change (PSC) relative to the

fixation condition was computed at each voxel for each stimulus presentation. A single fMRI mean image was created

for each of the 360 item presentations by taking the mean of the images collected 4s, 5s, 6s, and 7s after stimulus onset

(to account for the delay in the hemodynamic response). Eachof these images was normalized by subtracting its mean

and dividing by its standard deviation, both across all voxels.

To derive a corpus from Wikipedia we started with classical lists of words1 19 , as well as modern revisions/extensions

thereof4 23 , and compiled words corresponding to concepts that were deemed concrete or imageable, be it because

of their score in one of the lists or through editorial decision. We then identified the corresponding Wikipedia article

titles (e.g. “airplane” is “Fixed-wing aircraft”) and alsocompiled related articles which were linked to from these (e.g.

“Aircraft cabin”). If there were words in the original listswith multiple meanings we included the articles for at least

a few of those meanings. We used Wikipedia Extractor (http://medialab.di.unipi.it/wiki/Wikipedia_

extractor ) to remove HTML, wiki formatting and annotations and processed the resulting text through the morpho-

logical analysis tool Morpha11 (http://www.informatics.susx.ac.uk/research/groups/n lp/carroll/

morph.html ) to lemmatize all the words to their basic stems (e.g. “taste”,”tasted”,”taster” and “tastes” all become the

same word).

The resulting text corpus was processed with topic modelling 3 software (http://www.cs.princeton.edu/

˜ blei/topicmodeling.html ) to produce several models, excluding words that appeared in a single article or were

in a stopword list. We ran the software varying the number of topics allowed from 10 to 100, in increments of 10,

setting theα parameter to 25
#topics

(as suggested in other work modelling a large text corpus forsemantic purposes7 ,

though a range of multiples of the inverse of the number of topics yielded comparable experiment results).

Classification accuracy was measured on the task of matchingtwo example images with the two corresponding

wikipedia articles, by considering the probability assigned to the words in each article by the distributions derived

from the example images, as illustrated in Supplementary Figure 1 and described in the following steps:

1. leave out one pair of concepts (e.g. “apartment” and “hammer”) as test set
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2. use the example images for the remaining 58 concepts, together with their respective topic probabilities under

the model, as the training set to obtain a set of basis images (over 1000 stable voxels, selected in this training

set)

3. for each of the test concepts (for instance, “apartment”):

• predict the probability of each topic being present from the“apartment” example image

• obtain an “apartment”-brain probability distribution forthat combination of topic probabilities

• compute the probability of “apartment” article and “hammer” article under that distribution, respectively

papartment(“apartment
′′) andpapartment(“hammer

′′)

4. assign the article with highest probability to the corresponding test concept, and the other article to the other

concept (this will be correct or incorrect)

The steps are repeated for every possible pair of concepts, and the accuracy is the fraction of the pairs where the

assignment of articles to example images was correct. For voxel selection we used a reproducibility criterion, which

identifies voxels whose activation levels across the training set examples of each concept bear the same relationship to

each other over epochs (mathematically, the vector of activation levels across the sorted concepts is highly correlated

between epochs). More details are provided in the Supplementary Information.

The classification procedure has two steps that require solving optimization problems. The first is learning a set of

basis images, given example images for 58 concepts and theirrespective topic probabilities. This can be decomposed

into a set of independent ridge regression problems, one pervoxel, where one predicts the values of the voxel across

examples from the respective topic probabilities; the regression coefficients are the values of the basis images at

that voxel. The second problem is predicting the topic probabilities present in an example image, given a set of basis

images. This is a linear regression problem where the valuesof all the voxels in an example are predicted by combining

the basis images, using the topic probabilities for that example as the regression coefficients (under the constraint that

the values need to be greater than or equal to 0 and add up to 1, as they are probabilities). More details are provided in

the Supplementary Information.
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Figure Legends

Figure 1

The approach we follow to generate text (bottom) parallels that used by Naselaris16 (top, adapted from that paper),

by having three stages: creating a model of how stimuli will be represented in the brain, learning how to predict fMRI

data in response to the stimuli, given the model, and inverting the process to make a prediction for fMRI data not used

to fit the model.

Figure 2

A: Topic probabilities for the wikipedia articles about the 60concepts for which we have fMRI data. Each concept

belongs to one of 12 semantic categories, and concepts are grouped by category (five animals, five insects, etc).

Note that the category structure visible is due to how we sorted the columns for display; the model is trained in an

unsupervised manner and knows nothing about category structure. Note also that there are topics that are not probable

for any of the concepts, which happens because they are used for other concepts in the 3500 concept corpus. Below

this are the top 10 most probable words in the probability distributions associated with three of the topics.

B: The decomposition of the brain image for “House” into a weighted combination of topic basis images. The

weights allow us to combine the corresponding topic word distributions into an overall word distribution (top 10

words shown).

Figure 3

The inset under each article shows the top words from the corresponding brain-derived distribution (10 which are

present in the article (black) and 10 which are not (gray)). Each word of the two articles is colored to reflect the ratio

Papartment(word )

Phammer(word )
between the probabilities assigned to it by the brain-derived distributions for concepts “apartment”

and “hammer” (red means higher probability under “apartment”, blue under “hammer”, gray means the word is not

considered by the text model).

Figure 4

Average classification accuracy across models using 10 to 100 topics, for each of 9 subjects (chance level is 0.5); the

accuracy is broken down into classification of concept pairswhere concepts are in different categories (“Between”)

and pairs where the category is the same (“Within”). Error bars are across numbers of topics.
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Figure 5

Similarity between the topic probability representationsof each concept learned solely from text (left) and also the

representations predicted from the brain images for each pair of concepts, when they were being used as the test set

(right). The latter was obtained from subject 1 and a 40 topicmodel, but the general pattern is similar for the other

subjects. Note that the representations for concepts in thesame category similar when obtained from brain images but

this is also the case when those representations are derivedfrom text.
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Apartment

vacancy represents

Hammer

15 520 2010 10

An apartment is a self-contained housing unit that

occupies only part of a building. Apartments may

be owned (by an "owner occupier") or rented

(by "tenants"). In the US, some apartment-

dwellers own their own apartments, either as co-

ops, in which the residents own shares of a

corporation that owns the building or

development; or in condominiums, whose

residents own their apartments and share

ownership of the public spaces. Most apartments

are in buildings designed for the purpose, but

large older houses are sometimes divided into

apartments. The word "apartment" connotes a

residential unit or section in a building. In some

locations, particularly the United States, the word

denotes a rental unit owned by the building

owner, and is not typically used for a

condominium. For apartment landlords, each

vacancy represents a loss of income from

A hammer is a tool meant to deliver an impact to an

object. The most common uses are for driving nails,

fitting parts, and breaking up objects. Hammers are

often designed for a specific purpose, and vary widely

in their shape and structure. Usual features are a handle

and a head, with most of the weight in the head. The

basic design is hand-operated, but there are also many

mechanically operated models for heavier uses. The

hammer is a basic tool of many professions, and can

also be used as a weapon. By analogy, the name

"'hammer'" has also been used for devices that are

designed to deliver blows, e.g. in the caplock

mechanism of firearms. History. The use of simple

tools dates to about 2,400,000 BCE when various

shaped stones were used to strike wood, bone, or

other stones to break them apart and shape them.

Stones attached to sticks with strips of leather or

animal sinew were being used as hammers by about

30,000 BCE during the middle of the Paleolithic Stone
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