16 research outputs found

    Local and remote moisture sources for extreme precipitation: a study of the two catastrophic 1982 western Mediterranean episodes

    Get PDF
    Floods and flash floods are frequent in the south of Europe resulting from heavy rainfall events that often produce more than 200 mm in less than 24 h. Even though the meteorological conditions favourable for these situations have been widely studied, there is a lingering question that still arises: what humidity sources could explain so much precipitation? To answer this question, the regional atmospheric Weather Research and Forecasting (WRF) model with a recently implemented moisture tagging capability has been used to analyse the main moisture sources for two catastrophic flood events that occurred during the autumn of 1982 (October and November) in the western Mediterranean area, which is regularly affected by these types of adverse weather episodes. The procedure consists in selecting a priori potential moisture source regions for the extreme event under consideration, and then performing simulations using the tagging technique to quantify the relative contribution of each selected source to total precipitation. For these events we study the influence of four possible potential sources: (1) evaporation in the western Mediterranean; (2) evaporation in the central Mediterranean; (3) evaporation in the North Atlantic; and (4) advection from the tropical and subtropical Atlantic and Africa. Results show that these four moisture sources explain most of the accumulated precipitation, with the tropical and subtropical input being the most relevant in both cases. In the October event, evaporation in the western and central Mediterranean and in the North Atlantic also had an important contribution. However, in the November episode tropical and subtropical moisture accounted for more than half of the total accumulated rainfall, while evaporation in the western Mediterranean and North Atlantic played a secondary role and the contribution of the central Mediterranean was almost negligible. Therefore, remote sources were crucial: in the October event they played a similar role to local sources, whereas in the November case they were clearly dominant. In both episodes, long-distance moisture transport from the tropics and subtropics mostly occurred in mid-tropospheric layers, via well-defined moisture plumes with maximum mixing ratios at medium levels

    Conformational and thermal characterization of left ventricle remodeling post-myocardial infarction

    Get PDF
    Adverse cardiac remodeling after myocardial infarction (MI) causes impaired ventricular function and heart failure. Histopathological characterization is commonly used to detect the location, size and shape of MI sites. However, the information about chemical composition, physical structure and molecular mobility of peri- and infarct zones post-MI is rather limited. The main objective of this work was to explore the spatiotemporal biochemical and biophysical alterations of key cardiac components post-MI. The FTIR spectra of healthy and remote myocardial tissue shows amides A, I, II and III associated with proteins in freeze-died tissue as major absorptions bands. In infarcted myocardium, the spectrum of these main absorptions was deeply altered. FITR evidenced an increase of the amide A band and the distinct feature of the collagen specific absorption band at 1338cm-1 in the infarct area at 21days post-MI. At 21days post-MI, it also appears an important shift of amide I from 1646cm-1 to 1637cm-1 that suggests the predominance of the triple helical conformation in the proteins. The new spectra bands also indicate an increase in proteoglycans, residues of carbohydrates in proteins and polysaccharides in ischemic areas. Thermal analysis indicates a deep increase of unfreezable water/freezable water in peri- and infarcted tissues. In infarcted tissue is evidenced the impairment of myofibrillar proteins thermal profile and the emergence of a new structure. In conclusion, our results indicate a profound evolution of protein secondary structures in association with collagen deposition and reorganization of water involved in the scar maturation of peri- and infarct zones post-MI

    Low-density lipoprotein receptor-related protein 1 deficiency in cardiomyocytes reduces susceptibility to insulin resistance and obesity

    Get PDF
    Background: Low-density lipoprotein receptor-related protein 1 (LRP1) plays a key role in fatty acid metabolism and glucose homeostasis. In the context of dyslipemia, LRP1 is upregulated in the heart. Our aim was to evaluate the impact of cardiomyocyte LRP1 deficiency on high fat diet (HFD)-induced cardiac and metabolic alterations, and to explore the potential mechanisms involved. Methods: We used TnT-iCre transgenic mice with thoroughly tested suitability to delete genes exclusively in cardiomyocytes to generate an experimental mouse model with conditional Lrp1 deficiency in cardiomyocytes (TNT-iCre+-LRP1flox/flox). Findings: Mice with Lrp1-deficient cardiomyocytes (cm-Lrp1-/-) have a normal cardiac function combined with a favorable metabolic phenotype against HFD-induced glucose intolerance and obesity. Glucose intolerance protection was linked to higher hepatic fatty acid oxidation (FAO), lower liver steatosis and increased whole-body energy expenditure. Proteomic studies of the heart revealed decreased levels of cardiac pro-atrial natriuretic peptide (pro-ANP), which was parallel to higher ANP circulating levels. cm-Lrp1-/- mice showed ANP signaling activation that was linked to increased fatty acid (FA) uptake and increased AMPK/ ACC phosphorylation in the liver. Natriuretic peptide receptor A (NPR-A) antagonist completely abolished ANP signaling and metabolic protection in cm-Lrp1-/- mice. Conclusions: These results indicate that an ANP-dependent axis controlled by cardiac LRP1 levels modulates AMPK activity in the liver, energy homeostasis and whole-body metabolism

    Predictors of Response to Exclusive Enteral Nutrition in Newly Diagnosed Crohn´s Disease in Children: PRESENCE Study from SEGHNP

    Get PDF
    Exclusive enteral nutrition (EEN) has been shown to be more effective than corticosteroids in achieving mucosal healing in children with Crohn´s disease (CD) without the adverse effects of these drugs. The aims of this study were to determine the efficacy of EEN in terms of inducing clinical remission in children newly diagnosed with CD, to describe the predictive factors of response to EEN and the need for treatment with biological agents during the first 12 months of the disease. We conducted an observational retrospective multicentre study that included paediatric patients newly diagnosed with CD between 2014–2016 who underwent EEN. Two hundred and twenty-two patients (140 males) from 35 paediatric centres were included, with a mean age at diagnosis of 11.6 ± 2.5 years. The median EEN duration was 8 weeks (IQR 6.6–8.5), and 184 of the patients (83%) achieved clinical remission (weighted paediatric Crohn’s Disease activity index [wPCDAI] 15 mg/L and ileal involvement tended to respond better to EEN. EEN administered for 6–8 weeks is effective for inducing clinical remission. Due to the high response rate in our series, EEN should be used as the first-line therapy in luminal paediatric Crohn’s disease regardless of the location of disease and disease activityS

    Overview of recent TJ-II stellarator results

    Get PDF
    The main results obtained in the TJ-II stellarator in the last two years are reported. The most important topics investigated have been modelling and validation of impurity transport, validation of gyrokinetic simulations, turbulence characterisation, effect of magnetic configuration on transport, fuelling with pellet injection, fast particles and liquid metal plasma facing components. As regards impurity transport research, a number of working lines exploring several recently discovered effects have been developed: the effect of tangential drifts on stellarator neoclassical transport, the impurity flux driven by electric fields tangent to magnetic surfaces and attempts of experimental validation with Doppler reflectometry of the variation of the radial electric field on the flux surface. Concerning gyrokinetic simulations, two validation activities have been performed, the comparison with measurements of zonal flow relaxation in pellet-induced fast transients and the comparison with experimental poloidal variation of fluctuations amplitude. The impact of radial electric fields on turbulence spreading in the edge and scrape-off layer has been also experimentally characterized using a 2D Langmuir probe array. Another remarkable piece of work has been the investigation of the radial propagation of small temperature perturbations using transfer entropy. Research on the physics and modelling of plasma core fuelling with pellet and tracer-encapsulated solid-pellet injection has produced also relevant results. Neutral beam injection driven Alfvénic activity and its possible control by electron cyclotron current drive has been examined as well in TJ-II. Finally, recent results on alternative plasma facing components based on liquid metals are also presentedThis work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under Grant Agreement No. 633053. It has been partially funded by the Ministerio de Ciencia, Inovación y Universidades of Spain under projects ENE2013-48109-P, ENE2015-70142-P and FIS2017-88892-P. It has also received funds from the Spanish Government via mobility grant PRX17/00425. The authors thankfully acknowledge the computer resources at MareNostrum and the technical support provided by the Barcelona S.C. It has been supported as well by The Science and Technology Center in Ukraine (STCU), Project P-507F

    Local and remote moisture sources for extreme precipitation: a study of the two catastrophic 1982 western Mediterranean episodes

    No full text
    Floods and flash floods are frequent in the south of Europe resulting from heavy rainfall events that often produce more than 200 mm in less than 24 h. Even though the meteorological conditions favourable for these situations have been widely studied, there is a lingering question that still arises: what humidity sources could explain so much precipitation? To answer this question, the regional atmospheric Weather Research and Forecasting (WRF) model with a recently implemented moisture tagging capability has been used to analyse the main moisture sources for two catastrophic flood events that occurred during the autumn of 1982 (October and November) in the western Mediterranean area, which is regularly affected by these types of adverse weather episodes. The procedure consists in selecting a priori potential moisture source regions for the extreme event under consideration, and then performing simulations using the tagging technique to quantify the relative contribution of each selected source to total precipitation. For these events we study the influence of four possible potential sources: (1) evaporation in the western Mediterranean; (2) evaporation in the central Mediterranean; (3) evaporation in the North Atlantic; and (4) advection from the tropical and subtropical Atlantic and Africa. Results show that these four moisture sources explain most of the accumulated precipitation, with the tropical and subtropical input being the most relevant in both cases. In the October event, evaporation in the western and central Mediterranean and in the North Atlantic also had an important contribution. However, in the November episode tropical and subtropical moisture accounted for more than half of the total accumulated rainfall, while evaporation in the western Mediterranean and North Atlantic played a secondary role and the contribution of the central Mediterranean was almost negligible. Therefore, remote sources were crucial: in the October event they played a similar role to local sources, whereas in the November case they were clearly dominant. In both episodes, long-distance moisture transport from the tropics and subtropics mostly occurred in mid-tropospheric layers, via well-defined moisture plumes with maximum mixing ratios at medium levels

    A global perspective on western Mediterranean precipitation extremes

    Full text link
    The Mediterranean region has been declared a climate change hotspot due, among other reasons, to an expected increase in the torrential rains that frequently affect this densely populated area. However, the extent to which these torrential rains are connected to other regions outside the Mediterranean remains uncertain. Here we simulate 160 extreme precipitation events with an atmospheric model enabled for state-of-the-art moisture tracking and demonstrate that large scale moisture transport is a more important factor than evaporation over local sources. We find that the average precipitation fraction with source in the Mediterranean is only 35%, while 10% is from evapotranspiration over nearby land in continental Europe and 25% originates in the North Atlantic. The remaining 30% comes from several more distant source regions, sometimes as remote as the tropical Pacific or the Southern Hemisphere, indicating direct connections with multiple locations on the planet and a global scale energy redistribution. Our results point to the importance of approaching these extreme episodes from a more global rather than purely regional perspective, especially when attempting to attribute them to climate chang

    The central role of forests in the 2021 European floods

    Full text link
    Plants play a key role in the hydrological cycle, yet their contribution to extreme rainfall remains uncertain. Here we show that more than half of the vast amounts of water accumulated in the recent Germany and Belgium floods were supplied by vegetation (41% from transpiration, 11% from interception loss). We found that intercontinental transport of moisture from North American forests (which contributed more than 463 billion liters of water to the event) was a more important source than evaporation over nearby seas, such as the Mediterranean or the North Sea. Our results demonstrate that summer rainfall extremes in Europe may be strongly dependent on plant behavior and suggest that significant alterations in vegetation cover, even of remote regions, could have a direct effect on these potentially catastrophic events

    Relationship among LRP1 expression, Pyk2 phosphorylation and MMP-9 activation in post-myocardial infarction left ventricular remodelling

    No full text
    Trabajo presentado en el 4th World Congress on Acute Heart Failure, celebrado en París (Francia), del 29 de abril al 2 de mayo de 2017Peer reviewe
    corecore