996 research outputs found

    Analysis of local Al-doped back surface fields for high efficiency screen-printed solar cells

    Get PDF
    AbstractIn this paper, we investigate the surface recombination of local screen-printed aluminum contacts applied to rear passivated solar cells. We measure the surface recombination velocity by microwave-detected photoconductance decay measurements on test wafers with various contact geometries and compare two different aluminum pastes. The aluminum paste which is optimized for local contacts shows a deep and uniform local back surface field that results in Smet=600cm/s on 1.5Ωcm p-type silicon. In contrast, a standard Al paste for full-area metallization shows a non-uniform back surface field and a Smet of 2000cm/s on the same material. We achieve an area-averaged rear surface recombination velocity Srear=(65±20) cm/s for line contacts with a pitch of 2mm. The application of the optimized paste to screen-printed solar cells with dielectric surface passivation results in efficiencies of up to 19.2% with a Voc=655mV and a Jsc=38.4mA/cm2 on 125×125 mm2 p-type Cz silicon wafers. The internal quantum efficiency analysis reveals Srear=(70±30) cm/s which is in agreement with our lifetime results. Applying fine line screen-printing, efficiencies up to 19.4% are demonstrated

    Impact of 3-Cyanopropionic Acid Methyl Ester on the Electrochemical Performance of ZnMn₂O₄ as Negative Electrode for Li-Ion Batteries

    Get PDF
    Due to their high theoretical capacity, transition metal oxide compounds are promising electrode materials for lithium-ion batteries. However, one drawback is associated with relevant capacity fluctuations during cycling, widely observed in the literature. Such strong capacity variation can result in practical problems when positive and negative electrode materials have to be matched in a full cell. Herein, the study of ZnMn2O4 (ZMO) in a nonconventional electrolyte based on 3-cyanopropionic acid methyl ester (CPAME) solvent and LiPF6 salt is reported for the first time. Although ZMO in LiPF6/CPAME electrolyte displays a dramatic capacity decay during the first cycles, it shows promising cycling ability and a suppressed capacity fluctuation when vinylene carbonate (VC) is used as an additive to the CPAME-based electrolyte. To understand the nature of the solid electrolyte interphase (SEI), the electrochemical study is correlated to ex situ X-ray photoelectron spectroscopy (XPS)

    The unrestricted Skyrme-tensor time-dependent Hartree-Fock and its application to the nuclear response from spherical to triaxial nuclei

    Full text link
    The nuclear time-dependent Hartree-Fock model formulated in the three-dimensional space,based on the full Skyrme energy density functional and complemented with the tensor force,is presented for the first time. Full self-consistency is achieved by the model. The application to the isovector giant dipole resonance is discussed in the linear limit, ranging from spherical nuclei (16O, 120Sn) to systems displaying axial or triaxial deformation (24Mg, 28Si, 178Os, 190W, 238U). Particular attention is paid to the spin-dependent terms from the central sector of the functional, recently included together with the tensor. They turn out to be capable of producing a qualitative change on the strength distribution in this channel. The effect on the deformation properties is also discussed. The quantitative effects on the linear response are small and, overall, the giant dipole energy remains unaffected. Calculations are compared to predictions from the (quasi)-particle random phase approximation and experimental data where available, finding good agreement

    Dataset of electrophysiological patch-clamp recordings of the effect of the compounds deltamethrin, ATx-II and β4-peptide on human cardiac Nav1.5 sodium channel gating properties.

    Get PDF
    This article describes the effect of the pyrethroid insecticide deltamethrin on the cardiac voltage-gated sodium channel Nav1.5. Two concentrations of deltamethrin were used and the effects were compared with those of the sea anemone toxin ATx-II and β4-peptide, which is the C-terminus of the Nav channel β-subunit. Activation, fast inactivation, deactivation, persistent currents and resurgent currents of Nav1.5 channels were assessed in the presence of these compounds. The data display not only the effect of separately applied compounds on Nav1.5 channels but also investigates how combinations of these substances affect Nav1.5 channel gating properties. The dataset presented in this article is related to the research article "Mechanism underlying hooked resurgent-like tail currents induced by an insecticide in human cardiac Nav1.5″ (Sarah Thull, Cristian Neacsu, Andrias O. O'Reilly, Stefanie Bothe, Ralf Hausmann, Tobias Huth, Jannis Meents, Angelika Lampert, doi: 10.1016/j.taap.2020.11501), that investigates the effect of the pyrethroid insecticide deltamethrin on Nav channel gating properties and explains the mechanism underlying hooked, resurgent-like tail currents induced by deltamethrin in Nav1.5 channels

    Multiphonon Giant Resonances

    Full text link
    A new class of giant resonances in nuclei is discussed, i.e., giant resonances built on other giant resonances. These resonances are observed with very large cross sections in relativistic heavy ion collisions. A great experimental and theoretical effort is underway to understand the reaction mechanism which leads to the excitation of these states in nuclei, as well as the better microscopic understanding of their properties, e.g., strength, energy centroids, widths, and anharmonicities.Comment: Postscript file with text and 11 embedded figure

    Caffeinium bis­ulfate monohydrate

    Get PDF
    In the title compound (systematic name: 1,3,7-trimethyl-2,6-dioxo-7H-purin-9-ium hydrogen sulfate monohydrate), C8H11N4O2 +·HSO4 −·H2O, the crystal packing is stabilized through N—H⋯O and O—H⋯O hydrogen bonds

    Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics

    Get PDF
    Microorganisms play a fundamental role in the cycling of nutrients and energy on our planet. A common strategy for many microorganisms mediating biogeochemical cycles in anoxic environments is syntrophy, frequently necessitating close spatial proximity between microbial partners. We are only now beginning to fully appreciate the diversity and pervasiveness of microbial partnerships in nature, the majority of which cannot be replicated in the laboratory. One notable example of such cooperation is the interspecies association between anaerobic methane oxidizing archaea (ANME) and sulfate-reducing bacteria. These consortia are globally distributed in the environment and provide a significant sink for methane by substantially reducing the export of this potent greenhouse gas into the atmosphere. The interdependence of these currently uncultured microbes renders them difficult to study, and our knowledge of their physiological capabilities in nature is limited. Here, we have developed a method to capture select microorganisms directly from the environment, using combined fluorescence in situ hybridization and immunomagnetic cell capture. We used this method to purify syntrophic anaerobic methane oxidizing ANME-2c archaea and physically associated microorganisms directly from deep-sea marine sediment. Metagenomics, PCR, and microscopy of these purified consortia revealed unexpected diversity of associated bacteria, including Betaproteobacteria and a second sulfate-reducing Deltaproteobacterial partner. The detection of nitrogenase genes within the metagenome and subsequent demonstration of 15N2 incorporation in the biomass of these methane-oxidizing consortia suggest a possible role in new nitrogen inputs by these syntrophic assemblages
    corecore