18 research outputs found

    Valorisation of spent tire rubber as carbon adsorbents for Pb(II) and W(VI) in the framework of a Circular Economy

    Get PDF
    Open access funding provided by FCT|FCCN (b-on). This work was funded by (a) Valorpneu S.A. through the INOV.AÇÃO 2018 Award; Associate Laboratory i4HB (LA/P/0140/2020); Maria Bernardo thanks FCT (Fundação para a Ciência e Tecnologia) for funding through program DL 57/2016 – Norma transitória. A.M. Ferraria thanks Instituto Superior Técnico for Scientific Employment contract IST-ID/131/2018. This work was also financially supported by GREENERING COST Action CA18224.Spent tire rubber-derived chars and their corresponding H3PO4 and CO2-activated chars were used as adsorbents in the recovery of Pb(II) ion and (W(VI)) oxyanion from synthetic solutions. The developed chars (both raw and activated) were thoroughly characterized to have insight about their textural and surface chemistry properties. H3PO4-activated chars presented lower surface areas than the raw chars and an acidic surface chemistry which affected the performance of these samples as they showed the lowest removals of the metallic ions. On the other hand, CO2-activated chars presented increased surface areas and increased mineral content compared to the raw chars, having presented higher uptake capacities for both Pb(II) (103–116 mg/g) and W(VI) (27–31 mg/g) ions. Cation exchange with Ca, Mg and Zn ions was appointed as a mechanism for Pb removal, as well as surface precipitation in the form of hydrocerussite (Pb3(CO3)2(OH)2). W(VI) adsorption might have been ruled by strong electrostatic attractions between the negatively charged tungstate species and the highly positively charged carbons’ surface. The results shown in this work allow concluding that the valorisation of spent tire rubber through pyrolysis and the subsequent activation of the obtained chars is an alternative and a feasible option to generate adsorbent materials with a high uptake capacity of critical metallic elements.publishersversionepub_ahead_of_prin

    Novel organotin-PTA complexes supported on mesoporous carbon materials as recyclable catalysts for solvent-free cyanosilylation of aldehydes

    Get PDF
    The work was also funded by national funds through FCT, under the Scientific Employment Stimulus-Institutional Call (CEEC-INST/00102/2018). AGM is grateful to Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento ( IST-ID ) for his post-doctoral fellowship through grant no. BL133/2021-IST-ID . AP and AMF are grateful to FCT and Instituto Superior Técnico (IST), Portugal through DL/57/2017 (Contract no. IST-ID/197/2019 and IST-ID/131/2018). This publication is also supported by the RUDN University Strategic Academic Leadership Program (recipient AJLP, preparation). The authors also acknowledge the Portuguese NMR Network (IST-UL Centre) for access to the NMR facility. Publisher Copyright: © 2023 Elsevier B.V.New organotin compounds with general formula [(PTA-CH2-C6H4-p-COO)SnR3]Br (where R is Me for 3 and Ph for 4; PTA = 1,3,5-triaza-7-phosphaadamantane), bearing the methylene benzoate PTA derivative, were synthesized through a mild two-step process. The compounds were characterized by Fourier transform infrared spectroscopy, electrospray ionization mass spectrometry, elemental analysis and nuclear magnetic resonance spectroscopy (NMR). They were heterogenized on commercially available activated carbon (AC) and multi-walled carbon nanotubes (CNT), as well as on their chemically modified analogues. The obtained materials were characterized by scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. Complex 3 supported on activated carbon (3-AC) was found to be an active and recyclable catalyst for the cyanosilylation of several aromatic and aliphatic aldehydes. Using 3-AC with a low loading of 0.1 mol% several substrates were quantitatively converted, within just 5 min at 50 °C and under microwave irradiation in solvent-free conditions. Multinuclear NMR analysis suggested a mechanism that potentially involves a double activation process, where the nucleophilic phosphorus at the PTA derivative acts as a Lewis base and the Sn(IV) metal centre as a Lewis acid.publishersversionpublishe

    Silver Nanoparticles on Cellulose Surfaces: Quantitative Measurements

    No full text
    In this work, cellulose films pre-activated with carbonyldiimidazole (CDI) and grafted with 1,6-hexanediamine, were decorated with silver nanoparticles (AgNPs). The generation of AgNPs was followed by quartz crystal microbalance (QCM). The obtained films were characterized by X-Ray Photoelectron Spectroscopy (XPS) and imaged by atomic force microscopy (AFM). XPS confirmed the synthesis in situ of AgNPs on the film attesting their oxidation state. The results from the three techniques were compared showing how sound the quantitative treatment of the results issued from these techniques can be. The main objective of this work is exactly to show that the quantitative exploration of the results of different characterization techniques can and should be practiced systematically instead of just comparing them qualitatively

    Singlet oxygen reactivity in water-rich solvent mixtures

    No full text
    The 3-methylindole (3MI) oxygenation sensitized by psoralen (PSO) has been investigated in 100%, 20% and 5% O2-saturated water/dioxane (H2O/Dx) mixtures. The lowering of the ¹O2* chemical rate when water (k chem∆3MI = 1.4 × 109 M-1 s-1) is replaced by deuterated water (k chem∆3MI = 1.9 × 108 M-1 s-1) suggests that hydrogen abstraction is involved in the rate determining step. A high dependence of the chemical rate constant on water concentration in H2O/Dx mixtures was found showing that water molecules are absolutely essential for the success of the 3MI substrate oxidation by ¹O2* in water-rich solvent mixtures

    Preclinical In Vitro Assessment of Submicron-Scale Laser Surface Texturing on Ti6Al4V

    No full text
    Loosening of orthodontic and orthopedic implants is a critical and common clinical problem. To minimize the numbers of revision surgeries due to peri-implant inflammation or insufficient osseointegration, developments of new implant manufacturing strategies are indicated. Ultrafast laser surface texturing is a promising contact-free technology to modify the physicochemical properties of surfaces toward an anti-infectious functionalization. This work aims to texture Ti6Al4V surfaces with ultraviolet (UV) and green (GR) radiation for the manufacturing of laser-induced periodic surface structures (LIPSS). The assessment of these surface modifications addresses key aspects of topography, morphology and chemical composition. Human primary mesenchymal stromal cells (hMSCs) were cultured on laser-textured and polished Ti6Al4V to characterize the surfaces in terms of their in vitro biocompatibility, cytotoxicity, and metal release. The outcomes of the in vitro experiment show the successful culture of hMSCs on textured Ti6Al4V surfaces developed within this work. Cells cultured on LIPSS surfaces were not compromised in terms of their viability if compared to polished surfaces. Yet, the hMSC culture on UV-LIPSS show significantly lower lactate dehydrogenase and titanium release into the supernatant compared to polished. Thus, the presented surface modification can be a promising approach for future applications in orthodontics and orthopedics

    Human mesenchymal stem cell behavior on femtosecond laser-textured Ti-6Al-4V surfaces

    No full text
    AIM: The aim of the present work was to investigate ultrafast laser surface texturing as a surface treatment of Ti-6Al-4V alloy dental and orthopedic implants to improve osteoblastic commitment of human mesenchymal stem cells (hMSCs). MATERIALS & METHODS: Surface texturing was carried out by direct writing with an Yb:KYW chirped-pulse regenerative amplification laser system with a central wavelength of 1030 nm and a pulse duration of 500 fs. The surface topography and chemical composition were investigated by scanning electron microscopy and x-ray photoelectron spectroscopy, respectively. Three types of surface textures with potential interest to improve implant osseointegration can be produced by this method: laser-induced periodic surface structures (LIPSSs); nanopillars (NPs); and microcolumns covered with LIPSSs, forming a bimodal roughness distribution. The potential of the laser treatment in improving hMSC differentiation was assessed by in vitro study of hMSCs spreading, adhesion, elongation and differentiation using epifluorescence microscopy at different times after cell seeding, after specific stainings and immunostainings. RESULTS: Cell area and focal adhesion area were lower on the laser-textured surfaces than on a polished reference surface. Obviously, the laser-textured surfaces have an impact on cell shape. Osteoblastic commitment was observed independently of the surface topography after 2 weeks of cell seeding. When the cells were cultured (after 4 weeks of seeding) in osteogenic medium, LIPSS- and NP- textured surfaces enhanced matrix mineralization and bone-like nodule formation as compared with polished and microcolumn-textured surfaces. CONCLUSION: The present work shows that surface nanotextures consisting of LIPSSs and NPs can, potentially, improve hMSC differentiation into an osteoblastic lineage

    Bactericide Activity of Cellulose Acetate/Silver Nanoparticles Asymmetric Membranes: Surfaces and Porous Structures Role

    No full text
    The antibacterial properties of cellulose acetate/silver nanoparticles (AgNP) ultrafiltration membranes were correlated with their integral asymmetric porous structures, emphasizing the distinct features of each side of the membranes, that is, the active and porous layers surfaces. Composite membranes were prepared from casting solutions incorporating polyvinylpyrrolidone-covered AgNP using the phase inversion technique. The variation of the ratio acetone/formamide and the AgNP content resulted in a wide range of asymmetric porous structures with different hydraulic permeabilities. Comprehensive studies assessing the antibacterial activity against Escherichia coli (cell death and growth inhibition of bacteria in water) were performed on both membrane surfaces and in E. coli suspensions. The results were correlated with the surface chemical composition assessed by XPS. The silver-free membranes presented a generalized growth of E. coli, which is in contrast with the inhibition patterns displayed by the membranes containing AgNP. For the surface bactericide test, the growth inhibition depends on the accessibility of E. coli to the silver present in the membrane; as the XPS results show, the more permeable membranes (CA30 and CA34 series) have higher silver signal detected by XPS, which is correlated with a higher growth inhibition. On the other hand, the inhibition action is independent of the membrane porous structure when the membrane is deeply immersed in an E. coli inoculated suspension, presenting almost complete growth inhibition

    Propriedades dielétricas e características espectrais da constante fotocatalítica de nanopartículas TiO2 dopadas com cobalto

    Get PDF
    Dielectric properties and spectral dependence of the photocatalytic constant of Co doped P25 Degussa powder were studied. Doping of TiO2 matrix with cobalt was achieved by precipitation method using of Tris(diethylditiocarbamate)Co(III) precursor (CoDtc–Co[(C2H5)2NCS2]3). Five different Co contents with nominal Co/Ti atomic ratios of 0.005, 0.01, 0.02, 0.05 and 0.10 were chosen. Along with TiO2:Co samples, a few samples of nanopowders prepared by Sol-Gel method were also studied. As it follows from XPS and NMR studies, there is a concentration limit (TiO2:0.1Co) where cobalt atoms can be uniformly distributed across the TiO2 matrix before metallic clusters start to form. It was also shown that CoTiO3 phases are formed during annealing at high emperatures. From the temperature dependence of the dielectric constant it can be concluded that the relaxation processes still take place even at temperatures below 400 ◦C and that oxygen defect Ti–O octahedron reorientation take place at higher temperatures. The spectral dependency of the photocatalytic constant reveals the presence of some electronic states inside the energy gap of TiO2 for all nanopowdered samples.info:eu-repo/semantics/publishedVersio
    corecore