Novel organotin-PTA complexes supported on mesoporous carbon materials as recyclable catalysts for solvent-free cyanosilylation of aldehydes

Abstract

The work was also funded by national funds through FCT, under the Scientific Employment Stimulus-Institutional Call (CEEC-INST/00102/2018). AGM is grateful to Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento ( IST-ID ) for his post-doctoral fellowship through grant no. BL133/2021-IST-ID . AP and AMF are grateful to FCT and Instituto Superior Técnico (IST), Portugal through DL/57/2017 (Contract no. IST-ID/197/2019 and IST-ID/131/2018). This publication is also supported by the RUDN University Strategic Academic Leadership Program (recipient AJLP, preparation). The authors also acknowledge the Portuguese NMR Network (IST-UL Centre) for access to the NMR facility. Publisher Copyright: © 2023 Elsevier B.V.New organotin compounds with general formula [(PTA-CH2-C6H4-p-COO)SnR3]Br (where R is Me for 3 and Ph for 4; PTA = 1,3,5-triaza-7-phosphaadamantane), bearing the methylene benzoate PTA derivative, were synthesized through a mild two-step process. The compounds were characterized by Fourier transform infrared spectroscopy, electrospray ionization mass spectrometry, elemental analysis and nuclear magnetic resonance spectroscopy (NMR). They were heterogenized on commercially available activated carbon (AC) and multi-walled carbon nanotubes (CNT), as well as on their chemically modified analogues. The obtained materials were characterized by scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. Complex 3 supported on activated carbon (3-AC) was found to be an active and recyclable catalyst for the cyanosilylation of several aromatic and aliphatic aldehydes. Using 3-AC with a low loading of 0.1 mol% several substrates were quantitatively converted, within just 5 min at 50 °C and under microwave irradiation in solvent-free conditions. Multinuclear NMR analysis suggested a mechanism that potentially involves a double activation process, where the nucleophilic phosphorus at the PTA derivative acts as a Lewis base and the Sn(IV) metal centre as a Lewis acid.publishersversionpublishe

    Similar works