2,239 research outputs found

    Gas Giant Protoplanets Formed by Disk Instability in Binary Star Systems

    Full text link
    We present a suite of three dimensional radiative gravitational hydrodynamics models suggesting that binary stars may be quite capable of forming planetary systems similar to our own. The new models with binary companions do not employ any explicit artificial viscosity, and also include the third (vertical) dimension in the hydrodynamic calculations, allowing for transient phases of convective cooling. The calculations of the evolution of initially marginally gravitationally stable disks show that the presence of a binary star companion may actually help to trigger the formation of dense clumps that could become giant planets. We also show that in models without binary companions, which begin their evolution as gravitationally stable disks, the disks evolve to form dense rings, which then break-up into self-gravitating clumps. These latter models suggest that the evolution of any self-gravitating disk with sufficient mass to form gas giant planets is likely to lead to a period of disk instability, even in the absence of a trigger such as a binary star companion.Comment: 52 pages, 28 figure

    Phase noise measurements of the 400-kW, 2.115-GHz (S-band) transmitter

    Get PDF
    The measurement theory is described and a test method to perform phase noise verification using off-the-shelf components and instruments is presented. The measurement technique described consists of a double-balanced mixer used as phase detector, followed by a low noise amplifier. An FFT spectrum analyzer is then used to view the modulation components. A simple calibration procedure is outlined that ensures accurate measurements. A block diagram of the configuration is presented as well as actual phase noise data from the 400 kW, 2.115 GHz (S-band) klystron transmitter

    Migration of giant planets in planetesimal discs

    Full text link
    Planets orbiting a planetesimal circumstellar disc can migrate inward from their initial positions because of dynamical friction between planets and planetesimals. The migration rate depends on the disc mass and on its time evolution. Planets that are embedded in long-lived planetesimal discs, having total mass of 10−4−0.01M⊙10^{-4}-0.01 M_{\odot}, can migrate inward a large distance and can survive only if the inner disc is truncated or because of tidal interaction with the star. In this case the semi-major axis, a, of the planetary orbit is less than 0.1 AU. Orbits with larger aa are obtained for smaller value of the disc mass or for a rapid evolution (depletion) of the disc. This model may explain several of the orbital features of the giant planets that were discovered in last years orbiting nearby stars as well as the metallicity enhancement found in several stars associated with short-period planets.Comment: 21 pages; 6 encapsulated figures. Accepted by MNRA

    Dynamical Stability and Habitability of Gamma Cephei Binary-Planetary System

    Full text link
    It has been suggested that the long-lived residual radial velocity variations observed in the precision radial velocity measurements of the primary of Gamma Cephei (HR8974, HD222404, HIP116727) are likely due to a Jupiter-like planet around this star (Hatzes et al, 2003). In this paper, the orbital dynamics of this plant is studied and also the possibility of the existence of a hypothetical Earth-like planet in the habitable zone of its central star is discussed. Simulations, which have been carried out for different values of the eccentricity and semimajor axis of the binary, as well as the orbital inclination of its Jupiter-like planet, expand on previous studies of this system and indicate that, for the values of the binary eccentricity smaller than 0.5, and for all values of the orbital inclination of the Jupiter-like planet ranging from 0 to 40 degrees, the orbit of this planet is stable. For larger values of the binary eccentricity, the system becomes gradually unstable. Integrations also indicate that, within this range of orbital parameters, a hypothetical Earth-like planet can have a long-term stable orbit only at distances of 0.3 to 0.8 AU from the primary star. The habitable zone of the primary, at a range of approximately 3.1 to 3.8 AU, is, however, unstable.Comment: 25 pages, 7 figures, 3 tables, submitted for publicatio

    Particle Dark Energy

    Full text link
    We explore the physics of a gas of particles interacting with a condensate that spontaneously breaks Lorentz invariance. The equation of state of this gas varies from 1/3 to less than -1 and can lead to the observed cosmic acceleration. The particles are always stable. In our particular class of models these particles are fermions with a chiral coupling to the condensate. They may behave as relativistic matter at early times, produce a brief period where they dominate the expansion with w<0 today, and behave as matter at late time. There are no small parameters in our models, which generically lead to dark energy clustering and, depending on the choice of parameters, smoothing of small scale power.Comment: 8 pages, 5 figures; minor update with added refs; version appearing in Phys. Rev.

    Carbon-Based Ocean Productivity and Phytoplankton Physiology from Space

    Get PDF
    Ocean biogeochemical and ecosystem processes are linked by net primary production (NPP) in the ocean\u27s surface layer, where inorganic carbon is fixed by photosynthetic processes. Determinations of NPP are necessarily a function of phytoplankton biomass and its physiological status, but the estimation of these two terms from space has remained an elusive target. Here we present new satellite ocean color observations of phytoplankton carbon (C) and chlorophyll (Chl) biomass and show that derived Chl:C ratios closely follow anticipated physiological dependencies on light, nutrients, and temperature. With this new information, global estimates of phytoplankton growth rates (mu) and carbon-based NPP are made for the first time. Compared to an earlier chlorophyll-based approach, our carbon-based values are considerably higher in tropical oceans, show greater seasonality at middle and high latitudes, and illustrate important differences in the formation and demise of regional algal blooms. This fusion of emerging concepts from the phycological and remote sensing disciplines has the potential to fundamentally change how we model and observe carbon cycling in the global oceans

    Carbon-Based Primary Productivity Modeling With Vertically Resolved Photoacclimation

    Get PDF
    Net primary production (NPP) is commonly modeled as a function of chlorophyll concentration (Chl), even though it has been long recognized that variability in intracellular chlorophyll content from light acclimation and nutrient stress confounds the relationship between Chl and phytoplankton biomass. It was suggested previously that satellite estimates of backscattering can be related to phytoplankton carbon biomass (C) under conditions of a conserved particle size distribution or a relatively stable relationship between C and total particulate organic carbon. Together, C and Chl can be used to describe physiological state (through variations in Chl:C ratios) and NPP. Here, we fully develop the carbon-based productivity model (CbPM) to include information on the subsurface light field and nitracline depths to parameterize photoacclimation and nutrient stress throughout the water column. This depth-resolved approach produces profiles of biological properties (Chl, C, NPP) that are broadly consistent with observations. The CbPM is validated using regional in situ data sets of irradiance-derived products, phytoplankton chlorophyll: carbon ratios, and measured NPP rates. CbPM-based distributions of global NPP are significantly different in both space and time from previous Chl-based estimates because of the distinction between biomass and physiological influences on global Chl fields. The new model yields annual, areally integrated water column production of similar to 52 Pg C a(-1) for the global oceans

    Radiative transfer and the energy equation in SPH simulations of star formation

    Get PDF
    We introduce and test a new and highly efficient method for treating the thermal and radiative effects influencing the energy equation in SPH simulations of star formation. The method uses the density, temperature and gravitational potential of each particle to estimate a mean optical depth, which then regulates the particle's heating and cooling. The method captures -- at minimal computational cost -- the effects of (i) the rotational and vibrational degrees of freedom of H2, H2 dissociation, H0 ionisation, (ii) opacity changes due to ice mantle melting, sublimation of dust, molecular lines, H-, bound-free and free-free processes and electron scattering; (iv) external irradiation; and (v) thermal inertia. The new algorithm reproduces the results of previous authors and/or known analytic solutions. The computational cost is comparable to a standard SPH simulation with a simple barotropic equation of state. The method is easy to implement, can be applied to both particle- and grid-based codes, and handles optical depths 0<tau<10^{11}.Comment: Submitted to A&A, recommended for publicatio

    The Thermal Regulation of Gravitational Instabilities in Protoplanetary Disks II. Extended Simulations with Varied Cooling Rates

    Full text link
    In order to investigate mass transport and planet formation by gravitational instabilities (GIs), we have extended our 3-D hydrodynamic simulations of protoplanetary disks from a previous paper. Our goal is to determine the asymptotic behavior of GIs and how it is affected by different constant cooling times. Initially, Rdisk = 40 AU, Mdisk = 0.07 Mo, M* = 0.5 Mo, and Qmin = 1.8. Sustained cooling, with tcool = 2 orps (outer rotation periods, 1 orp ~ 250 yrs), drives the disk to instability in ~ 4 orps. This calculation is followed for 23.5 orps. After 12 orps, the disk settles into a quasi-steady state with sustained nonlinear instabilities, an average Q = 1.44 over the outer disk, a well-defined power-law Sigma(r), and a roughly steady Mdot ~ 5(-7) Mo/yr. The transport is driven by global low-order spiral modes. We restart the calculation at 11.2 orps with tcool = 1 and 1/4 orp. The latter case is also run at high azimuthal resolution. We find that shorter cooling times lead to increased Mdots, denser and thinner spiral structures, and more violent dynamic behavior. The asymptotic total internal energy and the azimuthally averaged Q(r) are insensitive to tcool. Fragmentation occurs only in the high-resolution tcool = 1/4 orp case; however, none of the fragments survive for even a quarter of an orbit. Ring-like density enhancements appear and grow near the boundary between GI active and inactive regions. We discuss the possible implications of these rings for gas giant planet formation.Comment: Due to document size restrictions, the complete manuscript could not be posted on astroph. Please go to http://westworld.astro.indiana.edu to download the full document including figure
    • 

    corecore