341,796 research outputs found

    MRI diagnosis of carpal boss and comparison with radiography

    Get PDF
    Background: A carpal boss is a potentially painful bony mass in the region of the second or third carpometacarpal joint. The combination of clinical examination and radiography is usually sufficient for the diagnosis. Purpose: To determine whether magnetic resonance imaging (MRI) examination of the quadrangular joint can assist the diagnosis of persistent pain near a carpal boss. Material and Methods: Fifty-seven patients with a carpal boss were retrospectively reviewed using MRI and conventional radiographs and compared to an asymptomatic control group. Results: MRI demonstrated a variable morphology and a variety of bone and soft tissue abnormalities associated with carpal boss. Bone marrow edema around the quadrangular joint shows a significant correlation (Fisher's exact test: P< 0.001) and a positive correlation (Pearson's test r = 0.632, significant at the 0.01 level [two-tailed]) with a painful carpal boss. Conclusion: MRI offers detailed examination of bone and soft tissue abnormalities associated with a carpal boss. Local bone marrow edema strongly correlates with a painful carpal boss

    Thermal resistances of solder-boss/potting compound combinations

    Get PDF
    Formulas, which can be used as a design tool, are derived to calculate the thermal resistance of solder-boss/potting compound combinations, for different depths of a solder boss, in electronic cordwood modules. Since the solder boss is the heat source, its shape and position will affect the thermal resistance of the surrounding potting compound

    Collapse and Fragmentation of Molecular Cloud Cores. X. Magnetic Braking of Prolate and Oblate Cores

    Full text link
    The collapse and fragmentation of initially prolate and oblate, magnetic molecular clouds is calculated in three dimensions with a gravitational, radiative hydrodynamics code. The code includes magnetic field effects in an approximate manner: magnetic pressure, tension, braking, and ambipolar diffusion are all modelled. The parameters varied for both the initially prolate and oblate clouds are the initial degree of central concentration of the radial density profile, the initial angular velocity, and the efficiency of magnetic braking (represented by a factor fmb=104f_{mb} = 10^{-4} or 10310^{-3}). The oblate cores all collapse to form rings that might be susceptible to fragmentation into multiple systems. The outcome of the collapse of the prolate cores depends strongly on the initial density profile. Prolate cores with central densities 20 times higher than their boundary densities collapse and fragment into binary or quadruple systems, whereas cores with central densities 100 times higher collapse to form single protostars embedded in bars. The inclusion of magnetic braking is able to stifle protostellar fragmentation in the latter set of models, as when identical models were calculated without magnetic braking (Boss 2002), those cores fragmented into binary protostars. These models demonstrate the importance of including magnetic fields in studies of protostellar collapse and fragmentation, and suggest that even when magnetic fields are included, fragmentation into binary and multiple systems remains as a possible outcome of protostellar collapse.Comment: 20 pages, 8 figures. Astrophysical Journal, in pres

    Threaded pilot insures cutting tool alignment

    Get PDF
    Threaded pilot allows machining of a port component, or boss, after the reciprocating hole has been threaded. It is used to align cutting surfaces with the boss threads, thus insuring precision alignment

    The SDSS-III Baryon Oscillation Spectroscopic Survey: Quasar Target Selection for Data Release Nine

    Full text link
    The SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), a five-year spectroscopic survey of 10,000 deg^2, achieved first light in late 2009. One of the key goals of BOSS is to measure the signature of baryon acoustic oscillations in the distribution of Ly-alpha absorption from the spectra of a sample of ~150,000 z>2.2 quasars. Along with measuring the angular diameter distance at z\approx2.5, BOSS will provide the first direct measurement of the expansion rate of the Universe at z > 2. One of the biggest challenges in achieving this goal is an efficient target selection algorithm for quasars over 2.2 < z < 3.5, where their colors overlap those of stars. During the first year of the BOSS survey, quasar target selection methods were developed and tested to meet the requirement of delivering at least 15 quasars deg^-2 in this redshift range, out of 40 targets deg^-2. To achieve these surface densities, the magnitude limit of the quasar targets was set at g <= 22.0 or r<=21.85. While detection of the BAO signature in the Ly-alpha absorption in quasar spectra does not require a uniform target selection, many other astrophysical studies do. We therefore defined a uniformly-selected subsample of 20 targets deg^-2, for which the selection efficiency is just over 50%. This "CORE" subsample will be fixed for Years Two through Five of the survey. In this paper we describe the evolution and implementation of the BOSS quasar target selection algorithms during the first two years of BOSS operations. We analyze the spectra obtained during the first year. 11,263 new z>2.2 quasars were spectroscopically confirmed by BOSS. Our current algorithms select an average of 15 z > 2.2 quasars deg^-2 from 40 targets deg^-2 using single-epoch SDSS imaging. Multi-epoch optical data and data at other wavelengths can further improve the efficiency and completeness of BOSS quasar target selection. [Abridged]Comment: 33 pages, 26 figures, 12 tables and a whole bunch of quasars. Submitted to Ap

    The Big Occulting Steerable Satellite (BOSS)

    Get PDF
    Natural (such as lunar) occultations have long been used to study sources on small angular scales, while coronographs have been used to study high contrast sources. We propose launching the Big Occulting Steerable Satellite (BOSS), a large steerable occulting satellite to combine both of these techniques. BOSS will have several advantages over standard occulting bodies. BOSS would block all but about 4e-5 of the light at 1 micron in the region of interest around the star for planet detections. Because the occultation occurs outside the telescope, scattering inside the telescope does not degrade this performance. BOSS could be combined with a space telescope at the Earth-Sun L2 point to yield very long integration times, in excess of 3000 seconds. If placed in Earth orbit, integration times of 160--1600 seconds can be achieved from most major telescope sites for objects in over 90% of the sky. Applications for BOSS include direct imaging of planets around nearby stars. Planets separated by as little as 0.1--0.25 arcseconds from the star they orbit could be seen down to a relative intensity as little as 1e-9 around a magnitude 8 (or brighter) star. Other applications include ultra-high resolution imaging of compound sources, such as microlensed stars and quasars, down to a resolution as little as 0.1 milliarcseconds.Comment: 25pages, 4 figures, uses aaspp4, rotate, and epsfig. Submitted to the Astrophysical Journal. For more details see http://erebus.phys.cwru.edu/~boss

    The Stripe 82 Massive Galaxy Project II: Stellar Mass Completeness of Spectroscopic Galaxy Samples from the Baryon Oscillation Spectroscopic Survey

    Get PDF
    The Baryon Oscillation Spectroscopic Survey (BOSS) has collected spectra for over one million galaxies at 0.15<z<0.70.15<z<0.7 over a volume of 15.3 Gpc3^3 (9,376 deg2^2) -- providing us an opportunity to study the most massive galaxy populations with vanishing sample variance. However, BOSS samples are selected via complex color cuts that are optimized for cosmology studies, not galaxy science. In this paper, we supplement BOSS samples with photometric redshifts from the Stripe 82 Massive Galaxy Catalog and measure the total galaxy stellar mass function (SMF) at z0.3z\sim0.3 and z0.55z\sim0.55. With the total SMF in hand, we characterize the stellar mass completeness of BOSS samples. The high-redshift CMASS ("constant mass") sample is significantly impacted by mass incompleteness and is 80% complete at log10(M/M)>11.6\log_{10}(M_*/M_{\odot}) >11.6 only in the narrow redshift range z=[0.51,0.61]z=[0.51,0.61]. The low redshift LOWZ sample is 80% complete at log10(M/M)>11.6\log_{10}(M_*/M_{\odot}) >11.6 for z=[0.15,0.43]z=[0.15,0.43]. To construct mass complete samples at lower masses, spectroscopic samples need to be significantly supplemented by photometric redshifts. This work will enable future studies to better utilize the BOSS samples for galaxy-formation science.Comment: 18 pages, 17 figures, 5 table

    Giant Planet Formation by Disk Instability in Low Mass Disks?

    Full text link
    Forming giant planets by disk instability requires a gaseous disk that is massive enough to become gravitationally unstable and able to cool fast enough for self-gravitating clumps to form and survive. Models with simplified disk cooling have shown the critical importance of the ratio of the cooling to the orbital timescales. Uncertainties about the proper value of this ratio can be sidestepped by including radiative transfer. Three-dimensional radiative hydrodynamics models of a disk with a mass of 0.043M0.043 M_\odot from 4 to 20 AU in orbit around a 1M1 M_\odot protostar show that disk instabilities are considerably less successful in producing self-gravitating clumps than in a disk with twice this mass. The results are sensitive to the assumed initial outer disk (ToT_o) temperatures. Models with ToT_o = 20 K are able to form a single self-gravitating clump, whereas models with ToT_o = 25 K form clumps that are not quite self-gravitating. These models imply that disk instability requires a disk with a mass of at least 0.043M\sim 0.043 M_\odot inside 20 AU in order to form giant planets around solar-mass protostars with realistic disk cooling rates and outer disk temperatures. Lower mass disks around solar-mass protostars must rely upon core accretion to form inner giant planets.Comment: 14 pages, 5 figures, Astrophysical Journal Letters, in pres
    corecore