31 research outputs found

    Activation of the innate immune receptor Dectin-1 upon formation of a 'phagocytic synapse'.

    Get PDF
    Innate immune cells must be able to distinguish between direct binding to microbes and detection of components shed from the surface of microbes located at a distance. Dectin-1 (also known as CLEC7A) is a pattern-recognition receptor expressed by myeloid phagocytes (macrophages, dendritic cells and neutrophils) that detects β-glucans in fungal cell walls and triggers direct cellular antimicrobial activity, including phagocytosis and production of reactive oxygen species (ROS). In contrast to inflammatory responses stimulated upon detection of soluble ligands by other pattern-recognition receptors, such as Toll-like receptors (TLRs), these responses are only useful when a cell comes into direct contact with a microbe and must not be spuriously activated by soluble stimuli. In this study we show that, despite its ability to bind both soluble and particulate β-glucan polymers, Dectin-1 signalling is only activated by particulate β-glucans, which cluster the receptor in synapse-like structures from which regulatory tyrosine phosphatases CD45 and CD148 (also known as PTPRC and PTPRJ, respectively) are excluded (Supplementary Fig. 1). The 'phagocytic synapse' now provides a model mechanism by which innate immune receptors can distinguish direct microbial contact from detection of microbes at a distance, thereby initiating direct cellular antimicrobial responses only when they are required

    Binding of Soluble Yeast β-Glucan to Human Neutrophils and Monocytes is Complement-Dependent

    Get PDF
    The immunomodulatory properties of yeast β-1,3/1,6 glucans are mediated through their ability to be recognized by human innate immune cells. While several studies have investigated binding of opsonized and unopsonized particulate β-glucans to human immune cells mainly via complement receptor 3 (CR3) or Dectin-1, few have focused on understanding the binding characteristics of soluble β-glucans. Using a well-characterized, pharmaceutical grade, soluble yeast β-glucan, this study evaluated and characterized the binding of soluble β-glucan to human neutrophils and monocytes. The results demonstrated that soluble β-glucan bound to both human neutrophils and monocytes in a concentration-dependent and receptor-specific manner. Antibodies blocking the CD11b and CD18 chains of CR3 significantly inhibited binding to both cell types, establishing CR3 as the key receptor recognizing the soluble β-glucan in these cells. Binding of soluble β-glucan to human neutrophils and monocytes required serum and was also dependent on incubation time and temperature, strongly suggesting that binding was complement-mediated. Indeed, binding was reduced in heat-inactivated serum, or in serum treated with methylamine or in serum reacted with the C3-specific inhibitor compstatin. Opsonization of soluble β-glucan was demonstrated by detection of iC3b, the complement opsonin on β-glucan-bound cells, as well as by the direct binding of iC3b to β-glucan in the absence of cells. Binding of β-glucan to cells was partially inhibited by blockade of the alternative pathway of complement, suggesting that the C3 activation amplification step mediated by this pathway also contributed to binding

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Attenuation of hemodynamic response to laryngoscopy and endotracheal intubation with two different doses of labetalol in hypertensive patients

    Get PDF
    AbstractPurposeThe present study compared the efficacy of two different doses of labetalol, for attenuation of hemodynamic response to laryngoscopy and intubation in hypertensive patients.Patients and methods75 hypertensive patients, aged 18–60years undergoing elective surgical procedures, require general anesthesia and orotracheal intubation. Patients were allocated to any of the three groups (25 each), Group C (control) 5ml 0.9% saline. Group L1 (labetalol) 0.15mg/kg diluted with 0.9% saline to 5ml. Group L2 (labetalol) 0.3mg/kg diluted with 0.9% saline to 5ml. In the control group 5ml of 0.9% saline was given i.v. 5min prior to intubation. In the L1 group 0.15mg/kg of labetalol was given i.v. 5min prior to intubation. In the L2 group 0.3mg/kg of labetalol was given i.v. 5min prior to intubation. All the patients were subjected to the same standard anesthetic technique. Heart rate (HR), systolic blood pressure (SBP) and diastolic blood pressure (DBP) were recorded prior to induction, at time of intubation and 1, 3, 5, and 10min after intubation. Mean arterial pressure (MAP) and rate pressure product (RPP) were calculated.ResultsCompared to placebo both the doses of labetalol (0.15mg/kg) and (0.3mg/kg) significantly attenuated the rise in heart rate, systolic blood pressure, and RPP during laryngoscopy and intubation. However, the difference was not statistically significant between both doses of labetalol at intubation, 1min, 3min and 10min post-intubation.ConclusionBoth doses of labetalol (0.15mg/kg and 0.3mg/kg) attenuate hemodynamic response to laryngoscopy and intubation in dose dependent manner

    Rapid Cloning For Protein Crystallography Using Type IIS Restriction Enzymes

    No full text
    Recombinant proteins are used routinely in macromolecular crystallographic experiments. Efficiency in cloning thus becomes a valuable resource to a macromolecular crystallographer. The use of type IIS restriction enzymes (outside cutters) concurrent with ligation allows for rapid cloning. A vector can be modified easily to incorporate sites for outside cutters, such as BspQI or BsaI. Critical and unique to our cloning method is the upshift of reaction incubations to 50 °C where the ligase is inactivated while the restriction enzyme is still active. The result is that very low background of undesired cloning intermediates is observed. Multiple DNA molecules can be simultaneously joined with a simplicity and effectiveness that rivals overlap PCR when BsaI is used. Using type IIS enzymes thus provides great control, flexibility, and simplicity in cloning strategies

    Inhibitory affinity modulation of FcγRIIA ligand binding by glycosphingolipids by inside-out signaling.

    No full text
    The interaction of the human FcγRIIA with immune complexes (ICs) promotes neutrophil activation and thus must be tightly controlled to avoid damage to healthy tissue. Here, we demonstrate that a fungal-derived soluble β-1,3/1,6-glucan binds to the glycosphingolipid long-chain lactosylceramide (LacCer) to reduce FcγRIIA-mediated recruitment to immobilized ICs under flow, a process requiring high-affinity FcγRIIA-immunoglobulin G (IgG) interactions. The inhibition requires Lyn phosphorylation of SHP-1 phosphatase and the FcγRIIA immunotyrosine-activating motif. β-glucan reduces the effective 2D affinity of FcγRIIA for IgG via Lyn and SHP-1 and, in&nbsp;vivo, inhibits FcγRIIA-mediated neutrophil recruitment to intravascular IgG deposited in the kidney glomeruli in a glycosphingolipid- and Lyn-dependent manner. In contrast, β-glucan did not affect FcγR functions that bypass FcγR affinity for IgG. In summary, we have identified a pathway for modulating the 2D affinity of FcγRIIA for ligand that relies on LacCer-Lyn-SHP-1-mediated inhibitory signaling triggered by β-glucan, a previously described activator of innate immunity
    corecore