8,011 research outputs found

    Leptonic secondary emission in a hadronic microquasar model

    Get PDF
    Context: It has been proposed that the origin of the very high-energy photons emitted from high-mass X-ray binaries with jet-like features, so-called microquasars (MQs), is related to hadronic interactions between relativistic protons in the jet and cold protons of the stellar wind. Leptonic secondary emission should be calculated in a complete hadronic model that include the effects of pairs from charged pion decays inside the jets and the emission from pairs generated by gamma-ray absorption in the photosphere of the system. Aims: We aim at predicting the broadband spectrum from a general hadronic microquasar model, taking into account the emission from secondaries created by charged pion decay inside the jet. Methods: The particle energy distribution for secondary leptons injected along the jets is consistently derived taking the energy losses into account. We also compute the spectral energy distribution resulting from these leptons is calculated after assuming different values of the magnetic field inside the jets. The spectrum of the gamma-rays produced by neutral pion-decay and processed by electromagnetic cascades under the stellar photon field. Results: We show that the secondary emission can dominate the spectral energy distribution at low energies (~1 MeV). At high energies, the production spectrum can be significantly distorted by the effect of electromagnetic cascades. These effects are phase-dependent, and some variability modulated by the orbital period is predicted.Comment: 8 pages, 5 figures. Accepted for publication in Astronomy & Astrophysic

    The dynamical distance and intrinsic structure of the globular cluster omega Centauri

    Get PDF
    We determine the dynamical distance D, inclination i, mass-to-light ratio M/L and the intrinsic orbital structure of the globular cluster omega Cen, by fitting axisymmetric dynamical models to the ground-based proper motions of van Leeuwen et al. and line-of-sight velocities from four independent data-sets. We correct the observed velocities for perspective rotation caused by the space motion of the cluster, and show that the residual solid-body rotation component in the proper motions can be taken out without any modelling other than assuming axisymmetry. This also provides a tight constraint on D tan i. Application of our axisymmetric implementation of Schwarzschild's orbit superposition method to omega Cen reveals no dynamical evidence for a significant radial dependence of M/L. The best-fit dynamical model has a stellar V-band mass-to-light ratio M/L_V = 2.5 +/- 0.1 M_sun/L_sun and an inclination i = 50 +/- 4 degrees, which corresponds to an average intrinsic axial ratio of 0.78 +/- 0.03. The best-fit dynamical distance D = 4.8 +/- 0.3 kpc (distance modulus 13.75 +/- 0.13 mag) is significantly larger than obtained by means of simple spherical or constant-anisotropy axisymmetric dynamical models, and is consistent with the canonical value 5.0 +/- 0.2 kpc obtained by photometric methods. The total mass of the cluster is (2.5 +/- 0.3) x 10^6 M_sun. The best-fit model is close to isotropic inside a radius of about 10 arcmin and becomes increasingly tangentially anisotropic in the outer region, which displays significant mean rotation. This phase-space structure may well be caused by the effects of the tidal field of the Milky Way. The cluster contains a separate disk-like component in the radial range between 1 and 3 arcmin, contributing about 4% to the total mass.Comment: 37 pages (23 figures), accepted for publication in A&A, abstract abridged, for PS and PDF file with full resolution figures, see http://www.strw.leidenuniv.nl/~vdven/oc

    Microquasar models for 3EG J1828+0142 and 3EG J1735-1500

    Get PDF
    Microquasars are promising candidates to emit high-energy gamma-rays. Moreover, statistical studies show that variable EGRET sources at low galactic latitudes could be associated with the inner spiral arms. The variable nature and the location in the Galaxy of the high-mass microquasars, concentrated in the galactic plane and within 55 degrees from the galactic center, give to these objects the status of likely counterparts of the variable low-latitude EGRET sources. We consider in this work the two most variable EGRET sources at low-latitudes: 3EG J1828+0142 and 3EG J1735-1500, proposing a microquasar model to explain the EGRET data in consistency with the observations at lower energies (from radio frequencies to soft gamma-rays) within the EGRET error box.Comment: (1)Universitat de Barcelona, (2)Instituto Argentino de Radioastronomia (3) Facultad de Ciencias Astronomicas y Geofisicas (4)Lawrence Livermore National Laboratory 6 pages, 2 figures. Presented as a poster at the V Microquasar Workshop, Beijing, June 2004. Accepted for publication in the Chinese Journal of Astronomy & Astrophysic

    Collective patterns arising out of spatio-temporal chaos

    Full text link
    We present a simple mathematical model in which a time averaged pattern emerges out of spatio-temporal chaos as a result of the collective action of chaotic fluctuations. Our evolution equation possesses spatial translational symmetry under a periodic boundary condition. Thus the spatial inhomogeneity of the statistical state arises through a spontaneous symmetry breaking. The transition from a state of homogeneous spatio-temporal chaos to one exhibiting spatial order is explained by introducing a collective viscosity which relates the averaged pattern with a correlation of the fluctuations.Comment: 11 pages (Revtex) + 5 figures (postscript

    Transillumination imaging through biological tissue by single-pixel detection

    Get PDF
    One challenge that has long held the attention of scientists is that of clearly seeing objects hidden by turbid media, as smoke, fog or biological tissue, which has major implications in fields such as remote sensing or early diagnosis of diseases. Here, we combine structured incoherent illumination and bucket detection for imaging an absorbing object completely embedded in a scattering medium. A sequence of low-intensity microstructured light patterns is launched onto the object, whose image is accurately reconstructed through the light fluctuations measured by a single-pixel detector. Our technique is noninvasive, does not require coherent sources, raster scanning nor time-gated detection and benefits from the compressive sensing strategy. As a proof of concept, we experimentally retrieve the image of a transilluminated target both sandwiched between two holographic diffusers and embedded in a 6mm-thick sample of chicken breast

    Gamma Rays from Compton Scattering in the Jets of Microquasars: Application to LS 5039

    Full text link
    Recent HESS observations show that microquasars in high-mass systems are sources of VHE gamma-rays. A leptonic jet model for microquasar gamma-ray emission is developed. Using the head-on approximation for the Compton cross section and taking into account angular effects from the star's orbital motion, we derive expressions to calculate the spectrum of gamma rays when nonthermal jet electrons Compton-scatter photons of the stellar radiation field. Calculations are presented for power-law distributions of nonthermal electrons that are assumed to be isotropically distributed in the comoving jet frame, and applied to Îł\gamma-ray observations of LS 5039. We conclude that (1) the TeV emission measured with HESS cannot result only from Compton-scattered stellar radiation (CSSR), but could be synchrotron self-Compton (SSC) emission or a combination of CSSR and SSC; (2) fitting both the HESS data and the EGRET data associated with LS 5039 requires a very improbable leptonic model with a very hard electron spectrum. Because the gamma rays would be variable in a leptonic jet model, the data sets are unlikely to be representative of a simultaneously measured gamma-ray spectrum. We therefore attribute EGRET gamma rays primarily to CSSR emission, and HESS gamma rays to SSC emission. Detection of periodic modulation of the TeV emission from LS 5039 would favor a leptonic SSC or cascade hadron origin of the emission in the inner jet, whereas stochastic variability alone would support a more extended leptonic model. The puzzle of the EGRET gamma rays from LS 5039 will be quickly solved with GLAST. (Abridged)Comment: 17 pages, 11 figures, ApJ, in press, June 1, 2006, corrected eq.

    Sound absorbing and insulating low-cost panels from end-of-life household materials for the development of vulnerable contexts in circular economy perspective

    Get PDF
    From a construction point of view, neighborhoods with residents living at or below the poverty threshold are characterized by low energy efficiency buildings, in which people live in acoustic discomfort with no viable options for home improvements, as they usually can not afford the materials and labor costs associated. An alternative to this is to use low-cost insulating elements made of non-conventional materials with acceptable acoustic properties. Given that household materials at their end-of-life (EoLHM) are free of costs and available also to the more disadvantaged population, they can be used to build acoustic panels for such contexts. This approach embraces several benefits since it reduces the amount of waste produced, the footprint deriving from the extraction of new raw materials and, by highlighting the potential of the EoLHM, discourages the abandonment of waste. In this paper, the acoustic properties of EoLHM, such as cardboard, egg-cartons, clothes, metal elements and combinations of them, are investigated by means of the impedance tube technique. The measured sound absorption coefficient and transmission loss have shown that EoLHM can be used for the realization of acoustic panels. However, since none of the analyzed materials shows absorbing and insulating properties at the same time, EoLHM must be wisely selected. This innovative approach supports the circular economy and the improvement for the living condition of low-income households

    Searching for nuclear stellar discs in simulations of star cluster mergers

    Get PDF
    The nuclei of galaxies often host small stellar discs with scalelengths of a few tens of parsecs and luminosities up to 107 Lïżœ. To investigate the formation and properties of nuclear stellar discs (NSDs), we look for their presence in a set of N-body simulations studying the dissipationless merging of multiple star clusters in galactic nuclei. A few tens of star clusters with sizes and masses comparable to those of globular clusters observed in the Milky Way are accreted on to a pre-existing nuclear stellar component: either a massive super star cluster or a rapidly rotating, compact disc with a scalelength of a few parsecs, mimicking the variety of observed nuclear structures. Images and kinematic maps of the simulation time-steps are then built and analysed as if they were real and at the distance of the Virgo cluster. We use the Scorza–Bender method to search for the presence of disc structures via photometric decomposition. In one case, the merger remnant has all the observed photometric and kinematic properties of NSDs observed in real galaxies. This shows that current observations are consistent with most of the NSD mass being assembled from the migration and accretion of star clusters into the galactic centre. In the other simulation instead, we detect an elongated structure from the unsharp masked image, that does not develop the photometric or kinematic signature of an NSD. Thus, in the context of searches for a disc structure, the Scorza–Bender method is a robust and necessary tool

    Tenidap sodium inhibits secretory non-pancreatic phospholipase A2 synthesis by foetal rat calvarial osteoblasts

    Get PDF
    Tenidap (TD) was initially defined as a dual inhibitor of cyclooxygenase and lipoxygenase. This study was designed to assess its inhibitory activity against proinflammatory phospholipase A2. This study shows that TD inhibits the synthesis of pro-inflammatory secretory non-pancreatic phospholipase A2 (sPLA2). Concentrations as low as 0.25 ÎŒg/ml (0.725 ÎŒM) reduced the release of sPLA2 by 40% from foetal rat calvarial osteoblasts stimulated with IL-1ÎČ and TNFα, whereas a concentration of 2.5 ÎŒg/ml (7.25 ÎŒM) reduced the release by over 80%. TD also markedly reduced the release of sPLA2 from unstimulated cells. There was no direct inhibition of sPLA2 enzymatic activity by TD in vitro. Northern blot analysis showed that TD did not affect the sPLA2 mRNA levels; however, immunoblotting showed a dose-dependent reduction in sPLA2 enzyme. These results, together with a marked reduction in sPLA2 enzymatic activity, suggest that TD inhibits sPLA2 synthesis at the post-transcriptional level. Therefore TD seems to inhibit the arachidonic acid cascade proximally to cyclooxygenase and lipoxygenase and its anti-inflammatory activity may be related at least in part to the inhibition of sPLA2 synthesis

    Brief review on semileptonic B decays

    Full text link
    We concisely review semileptonic B decays, focussing on recent progress on both theoretical and experimental sides.Comment: 18 pages, 2 figures; version to be published in Mod. Phys. Lett.
    • 

    corecore