6 research outputs found

    Proteome analysis and epitope mapping in a commercial reduced-gluten wheat product

    Get PDF
    Gluten related disorders, such as coeliac disease, wheat allergy and baker\u27s asthma are triggered by proteins present in food products made from wheat and related cereal species. The only treatment of these medical illnesses is a strict gluten-free diet; however, gluten-free products that are currently available in the market can have lower nutritional quality and are more expensive than traditional gluten containing cereal products. These constraints have led to the development of gluten-free or gluten-reduced ingredients. In this vein, a non-GMO wheat flour that purports to contain “65% less allergenic gluten” was recently brought to market. The present study aims to understand the alteration of the proteome profile of this wheat flour material. Liquid chromatography-mass spectrometry was used to investigate the proteome profile of the novel wheat flour, which was contrasted to a wheat flour control. Using both trypsin and chymotrypsin digests and a combined database search, 564 unique proteins were identified with 99% confidence. These proteins and the specific peptides used to identify them were mapped to the wheat genome to reveal the associated chromosomal regions in the novel wheat flour and the mixed wheat control. Of note, several ω- and γ-gliadins, and low-molecular weight glutenins mapping to the short arm of chromosome 1, as well as α-gliadins from the chromosome 6 short arm were absent or expressed at lower levels in the novel wheat variety. In contrast, the high-molecular weight glutenins and α-amylase/trypsin inhibitors were notably more abundant in this variety. A targeted quantitation experiment was developed using multiple reaction monitoring assays to quantify 359 tryptic and chymotryptic peptides from gluten and related allergenic proteins revealing a 33% decrease of gluten protein content in the novel wheat flour sample in comparison to mixed wheat control. However, additional mapping of known allergenic epitopes showed the presence of 53% higher allergenic peptides. Overall, the current study highlights the importance of proteomic analyses especially when complemented by sequence analysis and epitope mapping for monitoring immunostimulatory proteins

    Proteome changes resulting from malting in hordein-reduced barley lines

    Get PDF
    Hordeum vulgare L., commonly known as barley, is primarily used for animal feed and malting. The major storage proteins in barley are hordeins, known triggers of celiac disease (CD). Here, sequential window acquisition of all theoretical mass spectra (SWATH)-MS proteomics was employed to investigate the proteome profile of grain and malt samples from the malting barley cultivar Sloop and single-, double-, and triple hordein-reduced lines bred in a Sloop background. Using a discovery proteomics approach, 2688 and 3034 proteins were detected from the grain and malt samples, respectively. By utilizing label-free relative quantitation through SWATH-MS, a total of 2654 proteins have been quantified from grain and malt. The comparative analyses between the barley grain and malt samples revealed that the C-hordein-reduced lines have a more significant impact on proteome level changes due to malting than B- and D-hordein-reduced lines. Upregulated proteins in C-hordein-reduced lines were primarily involved in the tricarboxylic acid cycle and fatty acid peroxidation processes to provide more energy for seed germination during malting. By applying proteomics approaches after malting in hordein-reduced barley lines, we uncovered additional changes in the proteome driven by the genetic background that were not apparent in the sound grain. Our findings offer valuable insights for barley breeders and maltsters seeking to understand and optimize the performance of gluten-free grains in malt products

    From grain to malt: Tracking changes of ultra-low-gluten barley storage proteins after malting

    Get PDF
    Barley (Hordeum vulgare L.) is a major cereal crop produced globally. Hordeins, the major storage proteins in barley, can trigger immune responses leading to celiac disease or symptoms associated with food allergy. Here, proteomics approaches were employed to investigate the proteome level changes of grain and malt from the malting barley cultivar, Sloop, and single-, double- and triple hordein-reduced lines. The triple hordein-reduced line is an ultra-low gluten barley cultivar, Kebari®. Using discovery proteomics, 2,688 and 3,034 proteins in the barley and malt samples were detected respectively. Through the application of targeted proteomics, a significant reduction in the quantity of B-, D-, and γ-hordeins, as well as avenin-like proteins, was observed in the ultra-low gluten malt sample. A compensation mechanism was observed evidenced by increased biosynthesis of seed storage globulins, specifically vicilin-like globulins. Overall, this study has provided insights into protein compositional changes after malting in celiac-friendly barley varieties
    corecore