566 research outputs found

    Secondary radiation from the Pamela/ATIC excess and relevance for Fermi

    Full text link
    The excess of electrons/positrons observed by the Pamela and ATIC experiments gives rise to a noticeable amount of synchrotron and Inverse Compton Scattering (ICS) radiation when the e^+e^- interact with the Galactic Magnetic Field, and the InterStellar Radiation Field (ISRF). In particular, the ICS signal produced within the WIMP annihilation interpretation of the Pamela/ATIC excess shows already some tension with the EGRET data. On the other hand, 1 yr of Fermi data taking will be enough to rule out or confirm this scenario with a high confidence level. The ICS radiation produces a peculiar and clean "ICS Haze" feature, as well, which can be used to discriminate between the astrophysical and Dark Matter scenarios. This ICS signature is very prominent even several degrees away from the galactic center, and it is thus a very robust prediction with respect to the choice of the DM profile and the uncertainties in the ISRF.Comment: 5 pages, 3 figures; v2: improved figures, enlarged discussion on the gamma signal and data; to appear in ApJ

    Ultrahigh energy neutrinos with a mediterranean neutrino telescope

    Full text link
    A study of the ultra high energy neutrino detection performances of a km^3 Neutrino Telescope sitting at the three proposed sites for "ANTARES", "NEMO" and "NESTOR" in the Mediterranean sea is here performed. The detected charged leptons energy spectra, entangled with their arrival directions, provide an unique tool to both determine the neutrino flux and the neutrino-nucleon cross section.Comment: 10 pages, 10 figures, Proceedings of XII International Workshop on Neutrino Telescopes, Venezia 200

    Radio constraints on dark matter annihilation in the galactic halo and its substructures

    Get PDF
    Annihilation of Dark Matter usually produces together with gamma rays comparable amounts of electrons and positrons. The e+e- gyrating in the galactic magnetic field then produce secondary synchrotron radiation which thus provides an indirect mean to constrain the DM signal itself. To this purpose, we calculate the radio emission from the galactic halo as well as from its expected substructures and we then compare it with the measured diffuse radio background. We employ a multi-frequency approach using data in the relevant frequency range 100 MHz-100 GHz, as well as the WMAP Haze data at 23 GHz. The derived constraints are of the order =10^{-24} cm3 s^{-1} for a DM mass m_chi=100 GeV sensibly depending however on the astrophysical uncertainties, in particular on the assumption on the galactic magnetic field model. The signal from single bright clumps is instead largely attenuated by diffusion effects and offers only poor detection perspectives.Comment: 12 pages, 7 figures; v2: some references added, some discussions enlarged; matches journal versio

    High Energy Neutrinos with a Mediterranean Neutrino Telescope

    Get PDF
    The high energy neutrino detection by a km^3 Neutrino Telescope placed in the Mediterranean sea provides a unique tool to both determine the diffuse astrophysical neutrino flux and the neutrino-nucleon cross section in the extreme kinematical region, which could unveil the presence of new physics. Here is performed a brief analysis of possible NEMO site performances.Comment: 4 pages, 3 figures, Proceedings of the 30th ICRC 200

    Disentangling neutrino-nucleon cross section and high energy neutrino flux with a km^3 neutrino telescope

    Get PDF
    The energy--zenith angular event distribution in a neutrino telescope provides a unique tool to determine at the same time the neutrino-nucleon cross section at extreme kinematical regions, and the high energy neutrino flux. By using a simple parametrization for fluxes and cross sections, we present a sensitivity analysis for the case of a km^3 neutrino telescope. In particular, we consider the specific case of an under-water Mediterranean telescope placed at the NEMO site, although most of our results also apply to an under-ice detector such as IceCube. We determine the sensitivity to departures from standard values of the cross sections above 1 PeV which can be probed independently from an a-priori knowledge of the normalization and energy dependence of the flux. We also stress that the capability to tag downgoing neutrino showers in the PeV range against the cosmic ray induced background of penetrating muons appears to be a crucial requirement to derive meaningful constraints on the cross section.Comment: 10 pages, 28 figure

    Regulation of p27kip1 and p57kip2 functions by natural polyphenols

    Get PDF
    In numerous instances, the fate of a single cell not only represents its peculiar outcome but also contributes to the overall status of an organism. In turn, the cell division cycle and its control strongly influence cell destiny, playing a critical role in targeting it towards a specific phenotype. Several factors participate in the control of growth, and among them, p27Kip1 and p57Kip2, two proteins modulating various transitions of the cell cycle, appear to play key functions. In this review, the major features of p27 and p57 will be described, focusing, in particular, on their recently identified roles not directly correlated with cell cycle modulation. Then, their possible roles as molecular effectors of polyphenols’ activities will be discussed. Polyphenols represent a large family of natural bioactive molecules that have been demonstrated to exhibit promising protective activities against several human diseases. Their use has also been proposed in association with classical therapies for improving their clinical effects and for diminishing their negative side activities. The importance of p27Kip1 and p57Kip2 in polyphenols’ cellular effects will be discussed with the aim of identifying novel therapeutic strategies for the treatment of important human diseases, such as cancers, characterized by an altered control of growth

    A Beckwith–Wiedemann-associated CDKN1C mutation allows the identification of a novel nuclear localization signal in human p57Kip2

    Get PDF
    p57Kip2 protein is a member of the CIP/Kip family, mainly localized in the nucleus where it exerts its Cyclin/CDKs inhibitory function. In addition, the protein plays key roles in embryogenesis, differentiation, and carcinogenesis depending on its cellular localization and interactors. Mutations of CDKN1C, the gene encoding human p57Kip2, result in the development of different genetic diseases, including Beckwith–Wiedemann, IMAGe and Silver–Russell syndromes. We investigated a specific Beckwith–Wiedemann associated CDKN1C change (c.946 C>T) that results in the substitution of the C-terminal amino acid (arginine 316) with a tryptophan (R316W-p57Kip2). We found a clear redistribution of R316W-p57Kip2, in that while the wild-type p57Kip2 mostly occurs in the nucleus, the mutant form is also distributed in the cytoplasm. Transfection of two expression constructs encoding the p57Kip2 N-and C-terminal domain, respectively, allows the mapping of the nuclear localization signal(s) (NLSs) between residues 220–316. Moreover, by removing the basic RKRLR sequence at the protein C-terminus (from 312 to 316 residue), p57Kip2 was confined in the cytosol, implying that this sequence is absolutely required for nuclear entry. In conclusion, we identified an unreported p57Kip2 NLS and suggest that its absence or mutation might be of relevance in CDKN1C-associated human diseases determining significant changes of p57Kip2 localization/regulatory roles

    Detection of Brucella abortus DNA and RNA in different stages of development of the sucking louse Haematopinus tuberculatus

    Get PDF
    Background: Brucellosis is considered the world’s most widespread zoonotic infection. It causes abortion and sterility in livestock leading to serious economic losses and has even more serious medical impact in humans, since it can be a trigger to more than 500,000 infections per year worldwide. The aim of this study was to evaluate the role of Haematopinus tuberculatus, a louse that can parasitize several ruminants, as a new host of brucellosis. Louse specimens were collected from seropositive and seronegative water buffaloes and divided in 3 developmental stages: adults, nymphs and nits. All samples were separately screened for Brucella spp. DNA and RNA detection by Real Time PCR. In particular, primers and probes potentially targeting the 16S rRNA and the Brucella Cell Surface 31 kDalton Protein (bcsp31) genes were used for Real Time PCR and buffalo β actin was used as a housekeeping gene to quantify host DNA in the sample. A known amount of B. abortus purified DNA was utilized for standard curve preparation and the target DNA amount was divided by the housekeeping gene amount to obtain a normalized target value. A further molecular characterization was performed for Brucella strain typing and genotyping by the Bruce-ladder, AMOS-PCR and MLVA assays. Data were statistically analysed by ANOVA. Results: Brucella abortus DNA and RNA were detected in all developmental stages of the louse, suggesting the presence of viable bacteria. Data obtained by MLVA characterization support this finding, since the strains present in animals and the relative parasites were not always identical, suggesting bacterial replication. Furthermore, the detection of Brucella DNA and RNA in nits samples demonstrate, for the first time, a trans-ovarial transmission of the bacterium into the louse. Conclusions: These findings identified H. tuberculatus as a new host of brucellosis. Further studies are needed to establish the role of this louse in the epidemiology of the disease, such as vector or reservoir
    • …
    corecore