87 research outputs found

    An ultra-low dissipation micro-oscillator for quantum opto-mechanics

    Full text link
    Generating non-classical states of light by opto-mechanical coupling depends critically on the mechanical and optical properties of micro-oscillators and on the minimization of thermal noise. We present an oscillating micro-mirror with a mechanical quality factor Q = 2.6x10^6 at cryogenic temperature and a Finesse of 65000, obtained thanks to an innovative approach to the design and the control of mechanical dissipation. Already at 4 K with an input laser power of 2 mW, the radiation-pressure quantum fluctuations become the main noise source, overcoming thermal noise. This feature makes our devices particularly suitable for the production of pondero-motive squeezing.Comment: 21 pages including Supplementary Informatio

    Detection of weak stochastic force in a parametrically stabilized micro opto-mechanical system

    Full text link
    Measuring a weak force is an important task for micro-mechanical systems, both when using devices as sensitive detectors and, particularly, in experiments of quantum mechanics. The optimal strategy for resolving a weak stochastic signal force on a huge background (typically given by thermal noise) is a crucial and debated topic, and the stability of the mechanical resonance is a further, related critical issue. We introduce and analyze the parametric control of the optical spring, that allows to stabilize the resonance and provides a phase reference for the oscillator motion, yet conserving a free evolution in one quadrature of the phase space. We also study quantitatively the characteristics of our micro opto-mechanical system as detector of stochastic force for short measurement times (for quick, high resolution monitoring) as well as for the longer term observations that optimize the sensitivity. We compare a simple, naive strategy based on the evaluation of the variance of the displacement (that is a widely used technique) with an optimal Wiener-Kolmogorov data analysis. We show that, thanks to the parametric stabilization of the effective susceptibility, we can more efficiently implement Wiener filtering, and we investigate how this strategy improves the performance of our system. We finally demonstrate the possibility to resolve stochastic force variations well below 1% of the thermal noise

    Tof ion spectra de convolution for lasergenerated plasmas

    Get PDF
    EnA study of different targets (Fe, Ti, Ni, Al2O3) ablation, in vacuum, by using a ns Nd:YAG laser radiation, 1064 nm and 532 nm (second harmonic) wavelengths, is reported. Laser pulse with high intensity generates a plasma at the target surface, with high non-isotropic emission of neutral and ion species, mainly emitted along the normal to the target surface. Time of flight (TOF) measurements are performed by using an ion collector consisting of a collimated Faraday cup placed along the normal to the target surface and an Ion Energy Analyzer (IEA) detector. The TOF spectra are converted as a function of the ions velocity and they are deconvolved for the various ion charge states by using the “Coulomb-Boltzmann shifted” function approach through the “Peakfit” mathematical code. The fit of the experimental distribution data permits to estimate the equivalent plasma temperature and the average energy shift of the distributions as a function of the ion charge state. This energy shift leads to the evaluation of the electric field producing the ion acceleration inside the plasma

    Dynamical two-mode squeezing of thermal fluctuations in a cavity opto-mechanical system

    Full text link
    We report the experimental observation of two-mode squeezing in the oscillation quadratures of a thermal micro-oscillator. This effect is obtained by parametric modulation of the optical spring in a cavity opto-mechanical system. In addition to stationary variance measurements, we describe the dynamic behavior in the regime of pulsed parametric excitation, showing enhanced squeezing effect surpassing the stationary 3dB limit. While the present experiment is in the classical regime, our technique can be exploited to produce entangled, macroscopic quantum opto-mechanical modes

    Control of Recoil Losses in Nanomechanical SiN Membrane Resonators

    Get PDF
    In the context of a recoil damping analysis, we have designed and produced a membrane resonator equipped with a specific on-chip structure working as a "loss shield" for a circular membrane. In this device the vibrations of the membrane, with a quality factor of 10710^7, reach the limit set by the intrinsic dissipation in silicon nitride, for all the modes and regardless of the modal shape, also at low frequency. Guided by our theoretical model of the loss shield, we describe the design rationale of the device, which can be used as effective replacement of commercial membrane resonators in advanced optomechanical setups, also at cryogenic temperatures

    Calibrated quantum thermometry in cavity optomechanics

    Full text link
    Cavity optomechanics has achieved the major breakthrough of the preparation and observation of macroscopic mechanical oscillators in peculiarly quantum states. The development of reliable indicators of the oscillator properties in these conditions is important also for applications to quantum technologies. We compare two procedures to infer the oscillator occupation number, minimizing the necessity of system calibrations. The former starts from homodyne spectra, the latter is based on the measurement of the motional sidebands asymmetry in heterodyne spectra. Moreover, we describe and discuss a method to control the cavity detuning, that is a crucial parameter for the accuracy of the latter, intrinsically superior procedure

    Frequency noise cancellation in optomechanical systems for ponderomotive squeezing

    Full text link
    Ponderomotive squeezing of the output light of an optical cavity has been recently observed in the MHz range in two different cavity optomechanical devices. Quadrature squeezing becomes particularly useful at lower spectral frequencies, for example in gravitational wave interferometers, despite being more sensitive to excess phase and frequency noise. Here we show a phase/frequency noise cancellation mechanism due to destructive interference which can facilitate the production of ponderomotive squeezing in the kHz range and we demonstrate it experimentally in an optomechanical system formed by a Fabry-P\'{e}rot cavity with a micro-mechanical mirror.Comment: 11 pages, 9 figures. Physical explanation expanded. Modified figure

    Recurrent neural networks with fixed time convergence for linear and quadratic programming

    Get PDF
    In this paper, a new class of recurrent neural networks which solve linear and quadratic programs are presented. Their design is considered as a sliding mode control problem, where the network structure is based on the Karush-Kuhn-Tucker (KKT) optimality conditions with the KKT multipliers considered as control inputs to be implemented with fixed time stabilizing terms, instead of common used activation functions. Thus, the main feature of the proposed network is its fixed convergence time to the solution. That means, there is time independent to the initial conditions in which the network converges to the optimization solution. Simulations show the feasibility of the current approach

    third caesarean section in patient with myasthenia gravis

    Get PDF
    Abstract Myasthenia gravis (MG) is an autoimmune neuromuscular disease, characterised by muscle weakness and fatigability of the voluntary muscles, it affects young women in the second and third decade of life. We report a case of 30 years old multigravida woman with myasthenia gravis submitted to third iterative caesarean section with no adverse neonatal and maternal outcome. The course myathenia is highly variable and unpredictable during gestation and can change in subsequent pregnancies. Delivery specially, through caesarean section is very stressful and may cause severe myasthenic crisis. Although pregnancy and delivery represent particular events, that require more attention in these patients, they are not associated, in most cases, with higher risks of complications compared to normal pregnancy, delivery and postpartum period. According our experiences, in the management of myasthenic pregnant woman is necessary cooperation in a multidisciplinary team between obstetricians, neurologist, anaesthetist, and neonatologist for ensure an optimum outcome
    • …
    corecore