499 research outputs found

    A cryogenic liquid-mirror telescope on the moon to study the early universe

    Full text link
    We have studied the feasibility and scientific potential of zenith observing liquid mirror telescopes having 20 to 100 m diameters located on the moon. They would carry out deep infrared surveys to study the distant universe and follow up discoveries made with the 6 m James Webb Space Telescope (JWST), with more detailed images and spectroscopic studies. They could detect objects 100 times fainter than JWST, observing the first, high-red shift stars in the early universe and their assembly into galaxies. We explored the scientific opportunities, key technologies and optimum location of such telescopes. We have demonstrated critical technologies. For example, the primary mirror would necessitate a high-reflectivity liquid that does not evaporate in the lunar vacuum and remains liquid at less than 100K: We have made a crucial demonstration by successfully coating an ionic liquid that has negligible vapor pressure. We also successfully experimented with a liquid mirror spinning on a superconducting bearing, as will be needed for the cryogenic, vacuum environment of the telescope. We have investigated issues related to lunar locations, concluding that locations within a few km of a pole are ideal for deep sky cover and long integration times. We have located ridges and crater rims within 0.5 degrees of the North Pole that are illuminated for at least some sun angles during lunar winter, providing power and temperature control. We also have identified potential problems, like lunar dust. Issues raised by our preliminary study demand additional in-depth analyses. These issues must be fully examined as part of a scientific debate we hope to start with the present article.Comment: 35 pages, 11 figures. To appear in Astrophysical Journal June 20 200

    The zenithal 4-m International Liquid Mirror Telescope: a unique facility for supernova studies

    Full text link
    The 4-m International Liquid Mirror Telescope (ILMT) will soon become operational at the newly developed Devasthal observatory near Nainital (Uttarakhand, India). Coupled with a 4k ×\times 4k pixels CCD detector and TDI optical corrector, it will reach approximately 22.8, 22.3 and 21.4 magnitude in the gg', rr' and ii' spectral bands, respectively in a single scan. The limiting magnitudes can be further improved by co-adding the consecutive night images in particular filters. The uniqueness to observe the same sky region by looking towards the zenith direction every night, makes the ILMT a unique instrument to detect new supernovae (SNe) by applying the image subtraction technique. High cadence (\sim24 hours) observations will help to construct dense sampling multi-band SNe light curves. We discuss the importance of the ILMT facility in the context of SNe studies. Considering the various plausible cosmological parameters and observational constraints, we perform detailed calculations of the expected SNe rate that can be detected with the ILMT in different spectral bands.Comment: 11 pages, 6 figures, 3 tables, accepted for publication in MNRA

    Transcriptome analysis of Paspalum notatum and Paspalum vaginatum under water deficit condition.

    Get PDF
    Drought is one of the abiotic stresses that most affect plant growth and productivity. Grasses of the genus Paspalum are successfully used as turf and forage in Australia, Argentina, Brazil and United States. Paspalum notatum has good forage quality, and P. vaginatum, high tolerance to salinity. In addition, their potential to tolerate drought has been described previously, making them interesting for transcriptome studies under water deficit. The objective of this work was to analyze the gene expression profiles of both species in response to drought.Genética 2019

    Nanoengineered Astronomical Optics

    Full text link
    We describe a technology for the fabrication of inexpensive and versatile mirrors through the use of a new type of nanoengineered optical material composed by the spreading of a self-assembling reflective colloidal film spread at the surface of a liquid. These new reflecting liquids offer interesting possibilities for astronomical instrumentation. For example, they can replace mercury in conventional rotating liquid mirrors. The main advantages offered include extremely low cost and, by coating a viscous liquid, the possibility of tilting the mirror by a few tens of degrees. We also have coated ferromagnetic liquids with these reflecting films. The resulting surfaces can be shaped by the application of a magnetic field, yielding reflecting surfaces that can have complicated shapes that can rapidly shift with time. These inexpensive and versatile optical elements could have numerous scientific and technological applications. Among possible astronomical applications, they could be used to make large inexpensive adaptive mirrors exhibiting strokes ranging from nanometers to several millimeters.Comment: Submitted to Astrophysical Journal Letters. 18 pages, 4 figure

    Observations of radio pulses from CU Virginis

    Get PDF
    The magnetic chemically peculiar star CU Virginis is a unique astrophysical laboratory for stellar magnetospheres and coherent emission processes. It is the only known main sequence star to emit a radio pulse every rotation period. Here we report on new observations of the CU Virginis pulse profile in the 13 and 20\,cm radio bands. The profile is known to be characterised by two peaks of 100%\% circularly polarised emission that are thought to arise in an electron-cyclotron maser mechanism. We find that the trailing peak is stable at both 13 and 20\,cm, whereas the leading peak is intermittent at 13\,cm. Our measured pulse arrival times confirm the discrepancy previously reported between the putative stellar rotation rates measured with optical data and with radio observations. We suggest that this period discrepancy might be caused by an unknown companion or by instabilities in the emission region. Regular long-term pulse timing and simultaneous multi-wavelength observations are essential to clarify the behaviour of this emerging class of transient radio source.Comment: Accepted by MNRAS Letters; 5 pages, 2 figures, 3 table

    Doppler imaging of the helium-variable star a Cen

    Full text link
    The helium-peculiar star a Cen exhibits line profile variations of elements such as iron, nitrogen and oxygen in addition to its well-known extreme helium variability. New high S/N, high-resolution spectra are used to perform a quantitative measurement of the abundances of the star and determine the relation of the concentrations of the heavier elements on the surface of the star to the helium concentration and the magnetic field orientation. Doppler images have been created using programs described in earlier papers by Rice and others. An alternative surface abundance mapping code has been used to model the helium line variations after our Doppler imaging of certain individual helium lines produced mediocre results. We confirm the long-known existence of helium-rich and helium-poor hemispheres on a Cen and we measure a difference of more than two orders of magnitude in helium abundance from one side of the star to the other. Helium is overabundant by a factor of about 5 over much of the helium-rich hemisphere. Of particular note is our discovery that the helium-poor hemisphere has a very high abundance of helium-3, approximately equal to the helium-4 abundance. a Cen is therefore a new member of the small group of helium-3 stars and the first well-established magnetic member of the class. For the three metals investigated here, there are two strong concentrations of abundance near the equator consistent with the positive magnetic maximum and two somewhat weaker concentrations of abundance where the helium concentration is centered and roughly where the negative peak of the magnetic field would be found. Another strong concentration is found near the equator and this is not explainable in terms of any simple symmetry with the helium abundance or the apparent magnetic field main polar locations.Comment: 9 pages, 9 figure

    Characterisation of the magnetic field of the Herbig Be star HD 200775

    Full text link
    After our recent discovery of four magnetic Herbig stars, we have decided to study in detail one of them, HD 200775, to determine if its magnetic topology is similar to that of the main sequence magnetic stars. With this aim, we monitored this star in Stokes I and V over more than two years, using the new spectropolarimeters ESPaDOnS at CFHT, and Narval at TBL. Using our data, we find that HD 200775 is a double-lined spectroscopic binary system, whose secondary seems similar, in temperature, to the primary. We determine the luminosity ratio of the system, and using the luminosity of the system found in literature, we derive the luminosity of both stars. From our measurements of the radial velocities of both stars we determine the ephemeris and the orbital parameters of the system. We have fitted 30 Stokes V profiles simultaneously, using a chi2 minimisation method, with a decentered-dipole model. The best-fit model provides a rotation period of 4.3281 d an inclination angle of 60 degrees, and a magnetic obliquity angle of 125 degrees. The polar strength of the magnetic dipole field is 1000 G, which is decentered by 0.05 R* from the center of the star. The derived magnetic field model is qualitatively identical to those commonly observed in the Ap/Bp stars, which bring strong argument in favour of the fossil field hypothesis, to explain the origin of the magnetic fields in the main sequence Ap/Bp stars. Our determination of the inclination of the rotation axis leads to a radius of the primary which is smaller than that derived from the HR diagram position. This can be explained by a larger intrinsic luminosity of the secondary relative to the primary, due to a larger circumstellar extinction of the secondary relative to the primary.Comment: Accepted for publication in MNRAS, 14 pages, 10 figure

    The magnetic Bp star 36 Lyncis, I. Magnetic and photospheric properties

    Get PDF
    This paper reports the photospheric, magnetic and circumstellar gas characteristics of the magnetic B8p star 36 Lyncis (HD 79158). Using archival data and new polarised and unpolarised high-resolution spectra, we redetermine the basic physical properties, the rotational period and the geometry of the magnetic field, and the photospheric abundances of various elements.}{Based on magnetic and spectroscopic measurements, we infer an improved rotational period of 3.83475±0.000023.83475\pm 0.00002 d. We determine a current epoch of the longitudinal magnetic field positive extremum (HJD 2452246.033), and provide constraints on the geometry of the dipole magnetic field (i\geq 56\degr, 3210GBd39303210 {\rm G}\leq B_{\rm d}\leq 3930 G, β\beta unconstrained). We redetermine the effective temperature and surface gravity using the optical and UV energy distributions, optical photometry and Balmer line profiles (Teff=13300±300T_{\rm eff}=13300\pm 300 K, logg=3.74.2\log g=3.7-4.2), and based on the Hipparcos parallax we redetermine the luminosity, mass, radius and true rotational speed (L=2.54±0.16L,M=4.0±0.2M,R=3.4±0.7R,veq=4561.5L=2.54\pm 0.16 L_\odot, M=4.0\pm 0.2 M_\odot, R=3.4\pm 0.7 R_\odot, v_{\rm eq}=45-61.5 \kms). We measure photospheric abundances for 21 elements using optical and UV spectra, and constrain the presence of vertical stratification of these elements. We perform preliminary Doppler Imaging of the surface distribution of Fe, finding that Fe is distributed in a patchy belt near the rotational equator. Most remarkably, we confirm strong variations of the Hα\alpha line core which we interpret as due to occultations of the star by magnetically-confined circumstellar gas.Comment: Accepted by Astronomy and Astrophysic
    corecore