129 research outputs found

    Purification of Propylene and Ethylene by a Robust Metal–Organic Framework Mediated by Host–Guest Interactions

    Get PDF
    From Wiley via Jisc Publications RouterHistory: received 2021-03-19, pub-electronic 2021-06-07Article version: VoRPublication status: PublishedFunder: Engineering and Physical Sciences Research Council; Id: http://dx.doi.org/10.13039/501100000266; Grant(s): EP/I011870, EP/R00661X/1, EP/S019367/1, EP/P025021/1, EP/P025498/1Funder: European Research Council; Id: http://dx.doi.org/10.13039/501100000781; Grant(s): 742401Abstract: Industrial purification of propylene and ethylene requires cryogenic distillation and selective hydrogenation over palladium catalysts to remove propane, ethane and/or trace amounts of acetylene. Here, we report the excellent separation of equimolar mixtures of propylene/propane and ethylene/ethane, and of a 1/100 mixture of acetylene/ethylene by a highly robust microporous material, MFM‐520, under dynamic conditions. In situ synchrotron single crystal X‐ray diffraction, inelastic neutron scattering and analysis of adsorption thermodynamic parameters reveal that a series of synergistic host–guest interactions involving hydrogen bonding and π⋅⋅⋅π stacking interactions underpin the cooperative binding of alkenes within the pore. Notably, the optimal pore geometry of the material enables selective accommodation of acetylene. The practical potential of this porous material has been demonstrated by fabricating mixed‐matrix membranes comprising MFM‐520, Matrimid and PIM‐1, and these exhibit not only a high permeability for propylene (≈1984 Barrer), but also a separation factor of 7.8 for an equimolar mixture of propylene/propane at 298 K

    Advanced TEMKIN Reactor: Testing of Industrial Eggshell Catalysts on the Laboratory Scale

    No full text
    In a variety of reactions in the chemical industry, eggshell catalysts with a thin active layer are applied; they are often crushed for laboratory testing. The destruction of the shell can be avoided by a special reactor design. The presented advanced TEMKIN reactor is a further development of the reactor system for testing eggshell catalysts on the laboratory scale published by Temkin and Kul'kova in 1969. It is suitable for kinetic studies and for the detailed investigation of deactivation processes, as shown on the example of selective hydrogenation of acetylene
    • 

    corecore