81 research outputs found

    Figure-Figure Interaction Between Bodies Having Arbitrary Shapes and Mass Distributions: A Power Series Expansion Approach

    Full text link
    We derive an expression for the mutual gravitational force and torque of two bodies having arbitrary shapes and mass distributions, as an expansion in power series of their products of inertia and of the relative coordinates of their centres of mass. The absolute convergence of all the power series developed is rigorously demonstrated. The absence of transcendental functions makes this formalism suitable for fast numerical applications. The products of inertia used here are directly related to the spherical harmonics coefficients, and we provide a detailed analysis of this relationship.Comment: 13 pages, accepted by Celestial Mechanics and Dynamical Astronom

    Eccentricity Evolution for Planets in Gaseous Disks

    Get PDF
    We investigate the hypothesis that interactions between a giant planet and the disk from which it forms promote eccentricity growth. These interactions are concentrated at discrete Lindblad and corotation resonances. Interactions at principal Lindblad resonances cause the planet's orbit to migrate and open a gap in the disk if the planet is sufficiently massive. Those at first order Lindblad and corotation resonances change the planet's orbital eccentricity. Eccentricity is excited by interactions at external Lindblad resonances which are located on the opposite side of corotation from the planet, and damped by co-orbital Lindblad resonances which overlap the planet's orbit. If the planet clears a gap in the disk, the rate of eccentricity damping by co-orbital Lindblad resonances is reduced. Density gradients associated with the gap activate eccentricity damping by corotation resonances at a rate which initially marginally exceeds that of eccentricity excitation by external Lindblad resonances. But the corotation torque drives a mass flux which reduces the density gradient near the resonance. Sufficient partial saturation of corotation resonances can tip the balance in favor of eccentricity excitation. A minimal initial eccentricity of a few percent is required to overcome viscous diffusion which acts to unsaturate corotation resonances by reestablishing the large scale density gradient. Thus eccentricity growth is a finite amplitude instability. Formally, interactions at the apsidal resonance, which is a special kind of co-orbital Lindblad resonance, appears to damp eccentricity faster than external Lindblad resonances can excite it. However, apsidal waves have such long wavelengths that they do not propagate in protoplanetary disks. This reduces eccentricity damping by the apsidal resonance to a modest level.Comment: Submitted to Ap

    Spectral study of Venus global topography and geoid from Magellan and PVO data

    Get PDF
    An analysis of newly available global harmonic models for topography and geoid on Venus was conducted. It was found that the power spectral density for Venus topography has a power law dependence on wave-number characteristic of Brown Noise, similar to what is found for the Earth. However, the Venus topography spectrum presents a rollover at lower degree (l = 3) than is observed for the Earth spectrum and has smaller amplitudes than that of the Earth's. The Venus geoid also obeys a power law relationship, at least for small values of l, but with a smaller slope and more power (for l greater than 3) than the Earth geoid

    Mars and frame-dragging: study for a dedicated mission

    Full text link
    In this paper we preliminarily explore the possibility of designing a dedicated satellite-based mission to measure the general relativistic gravitomagnetic Lense-Thirring effect in the gravitational field of Mars. The focus is on the systematic error induced by the multipolar expansion of the areopotential and on possible strategies to reduce it. It turns out that the major sources of bias are the Mars'equatorial radius R and the even zonal harmonics J_L, L = 2,4,6... of the areopotential. An optimal solution, in principle, consists of using two probes at high-altitudes (a\approx 9500-9600 km) and different inclinations, and suitably combining their nodes in order to entirely cancel out the bias due to \delta R. The remaining uncancelled mismodelled terms due to \delta J_L, L = 2,4,6,... would induce a bias \lesssim 1%, according to the present-day MGS95J gravity model, over a wide range of admissible values of the inclinations. The Lense-Thirring out-of-plane shifts of the two probes would amount to about 10 cm yr^-1.Comment: LaTex2e, 16 pages, 5 figures, no tables. To appear in General Relativity and Gravitatio

    The gravitational instability of a stream of co-orbital particles

    Full text link
    We describe the dynamics of a stream of equally spaced macroscopic particles in orbit around a central body (e.g. a planet or star). A co-orbital configuration of small bodies may be subject to gravitational instability, which takes the system to a spreading, disordered and collisional state. We detail the linear instability's mathematical and physical features using the shearing sheet model and subsequently track its nonlinear evolution with local N-body simulations. This model provides a convenient tool with which to understand the gravitational and collisional dynamics of narrow belts, such as Saturn's F-ring and the streams of material wrenched from tidally disrupted bodies. In particular, we study the tendency of these systems to form long-lived particle aggregates. Finally, we uncover an unexpected connection between the linear dynamics of the gravitational instability and the magnetorotational instability.Comment: 11 pages, 7 figures, 1 table. MNRAS, accepte

    Theory of the Mercury's spin-orbit motion and analysis of its main librations

    Full text link
    The upcoming space missions, MESSENGER and BepiColombo with onboard instrumentation capable of measuring the rotational parameters stimulate the objective to reach an accurate theory of the rotational motion of Mercury. For obtaining the real motion of Mercury, we have used our relativistic BJV model of solar system integration including the coupled spin-orbit motion of the Moon. We have extended this model by generalizing the spin-orbit couplings to the terrestrial planets, notably Mercury. The updated model is called SONYR (acronym of Spin-Orbit N-BodY Relativistic model). The SONYR model giving an accurate solution of the spin-orbit motion of Mercury permits to analyze the different families of the Hermean rotational librations. The spin-orbit motion of Mercury is characterized by two proper frequencies (namely 15.847 and 1066 years) and its 3:2 resonance presents a second synchronism which can be understood as a spin-orbit secular resonance (278 898 years). By using the SONYR model, we find a new determination of the mean obliquity, namely 1.6 arcminutes. Besides, we identify in the Hermean librations the impact of the uncertainty of the greatest principal moment of inertia (\cmr2) on the obliquity and on the libration in longitude (2.3 mas and 0.45 as respectively for an increase of 1% on the \cmr2 value). These determinations prove to be suitable for providing constraints on the internal structure of Mercury.Comment: 15 pages, 14 figures, 3 tables, accepted version to A&A (4 sept 2003

    On Zero Modes and the Vacuum Problem -- A Study of Scalar Adjoint Matter in Two-Dimensional Yang-Mills Theory via Light-Cone Quantisation

    Get PDF
    SU(2) Yang-Mills Theory coupled to massive adjoint scalar matter is studied in (1+1) dimensions using Discretised Light-Cone Quantisation. This theory can be obtained from pure Yang-Mills in 2+1 dimensions via dimensional reduction. On the light-cone, the vacuum structure of this theory is encoded in the dynamical zero mode of a gluon and a constrained mode of the scalar field. The latter satisfies a linear constraint, suggesting no nontrivial vacua in the present paradigm for symmetry breaking on the light-cone. I develop a diagrammatic method to solve the constraint equation. In the adiabatic approximation I compute the quantum mechanical potential governing the dynamical gauge mode. Due to a condensation of the lowest omentum modes of the dynamical gluons, a centrifugal barrier is generated in the adiabatic potential. In the present theory however, the barrier height appears too small to make any impact in this odel. Although the theory is superrenormalisable on naive powercounting grounds, the removal of ultraviolet divergences is nontrivial when the constrained mode is taken into account. The open aspects of this problem are discussed in detail.Comment: LaTeX file, 26 pages. 14 postscript figure

    Advancing Tests of Relativistic Gravity via Laser Ranging to Phobos

    Get PDF
    Phobos Laser Ranging (PLR) is a concept for a space mission designed to advance tests of relativistic gravity in the solar system. PLR's primary objective is to measure the curvature of space around the Sun, represented by the Eddington parameter Îł\gamma, with an accuracy of two parts in 10710^7, thereby improving today's best result by two orders of magnitude. Other mission goals include measurements of the time-rate-of-change of the gravitational constant, GG and of the gravitational inverse square law at 1.5 AU distances--with up to two orders-of-magnitude improvement for each. The science parameters will be estimated using laser ranging measurements of the distance between an Earth station and an active laser transponder on Phobos capable of reaching mm-level range resolution. A transponder on Phobos sending 0.25 mJ, 10 ps pulses at 1 kHz, and receiving asynchronous 1 kHz pulses from earth via a 12 cm aperture will permit links that even at maximum range will exceed a photon per second. A total measurement precision of 50 ps demands a few hundred photons to average to 1 mm (3.3 ps) range precision. Existing satellite laser ranging (SLR) facilities--with appropriate augmentation--may be able to participate in PLR. Since Phobos' orbital period is about 8 hours, each observatory is guaranteed visibility of the Phobos instrument every Earth day. Given the current technology readiness level, PLR could be started in 2011 for launch in 2016 for 3 years of science operations. We discuss the PLR's science objectives, instrument, and mission design. We also present the details of science simulations performed to support the mission's primary objectives.Comment: 25 pages, 10 figures, 9 table

    Mutual Potential of Homogeneous Polyhedra

    Full text link
    The mutual gravitational potential between a pair of homogeneous polyhedra is expressed using an infinite series. The nested volume integrals are evaluated analytically and result in simple tensor expressions containing no special functions. However, complexity increases as O (6 n ), where n is the term degree. An alternate formulation due to Liebenthal is also presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42570/1/10569_2004_Article_4621.pd
    • …
    corecore