25 research outputs found

    Nest monitoring does not affect nesting success of Whinchats Saxicola rubetra

    Get PDF
    It is important to assess the effect that research activities may have on animals in the wild, especially when key parameters, such as breeding success, could potentially be influenced by observer activity. For birds, some studies have suggested that nest monitoring can increase the chances of nest failure due to predation, whereas others suggest that human nest visits may actually deter mammalian predators. Nest monitoring visits can also influence breeding success more indirectly by altering parental provisioning behaviour. Here, the influence of monitoring activities on nest success was examined in a ground-nesting grassland bird, the Whinchat Saxicola rubetra. During the egg phase, a sample of nests were not visited between the initial finding event and the estimated hatching date; instead, the nest status was assessed at a distance. Daily survival rates (DSR) for these nests were compared with that of nests visited every 2 days. During the nestling phase, the effects of observer nest visits on parental provisioning behaviour were determined. Nest visits were found not to affect egg DSR significantly, and parental provisioning was disrupted for a maximum of 20 min (0.52% of the nestling period) following an observer visit. Given the variation in response to nest visits across species, we suggest that consideration should be given to observer impact in all studies where predation risk is high. Here, we illustrate a method for researchers to assess the impact of their nest visits to ensure they are not biasing estimates of breeding success

    Spatial variation in spring arrival patterns of Afro‐Palaearctic bird migration across Europe

    Get PDF
    Aim: Geographical patterns of migrant species arrival have been little studied, despite their relevance to global change responses. Here, we quantify continent-wide inter-specific variation in spatio-temporal patterns of spring arrival of 30 common migrant bird species and relate these to species characteristics and environmental conditions.Location: EuropeTime period: 2010-2019Major taxa studied: Birds, 30 speciesMethods: Using citizen science data from EuroBirdPortal, we modelled arrival phenology for 30 Afro-Palearctic migrant species across Europe to extract start and duration of species arrival at a 400 km square resolution. We related inter and intra-specific variation in arrival and duration to species characteristics and temperature at the start of the growing season (green-up) .Results: Spatial variation in start of arrival times indicates it took on average 1.6 days for the leading migratory front to move northwards by 100 km (range: 0.6—2.5 days). There was a major gradient in arrival phenology, from species which arrived earlier, least synchronously, in colder temperatures and progressed slowly northwards to species which arrived later, most synchronously and in warmer temperatures, and advanced quickly through Europe. The slow progress of early arrivers suggests that temperature limits their northward advance; this group included Aerial Insectivores and species wintering north of the Sahel. For the late arrivers, which included species wintering further south, seasonal resource availability in Africa may delay their arrival into Europe.Main conclusions: We found support for the green-wave hypothesis applying widely to migratory landbirds. Species arrival phenologies are linked to ecological differences between taxa, such as diet, and wintering location. Understanding these differences informs predictions of species’ sensitivity to global change. Publishing these arrival phenologies will facilitate further research and have additional conservation benefits such as informing designation of hunting seasons. Our methods are applicable to any taxa with repeated occurrence data across large scales. Key words: phenology, European-African migrants, bird migration, spring arrival, spatial variation, intraspecific and interspecific variation, EuroBirdPortal, citizen scientists, complete lists and casual record

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Genetic association study of childhood aggression across raters, instruments, and age

    Get PDF
    Childhood aggressive behavior (AGG) has a substantial heritability of around 50%. Here we present a genome-wide association metaanalysis (GWAMA) of childhood AGG, in which all phenotype measures across childhood ages from multiple assessors were included. We analyzed phenotype assessments for a total of 328 935 observations from 87 485 children aged between 1.5 and 18 years, while accounting for sample overlap. We also meta-analyzed within subsets of the data, i.e., within rater, instrument and age. SNP-heritability for the overall meta-analysis AGGoverall was 3.31% (SE= 0.0038). We found no genome-wide significant SNPs for AGGoverall. The gene-based analysis returned three significant genes: ST3GAL3 (P= 1.6E-06), PCDH7 (P= 2.0E-06), and IPO13 (P= 2.5E-06). All three genes have previously been associated with educational traits. Polygenic scores based on our GWAMA significantly predicted aggression in a holdout sample of children (variance explained = 0.44%) and in retrospectively assessed childhood aggression (variance explained = 0.20%). Genetic correlations rg among rater-specific assessment of AGG ranged from rg= 0.46 between self- and teacher-assessment to rg= 0.81 between mother- and teacher-assessment. We obtained moderate-to-strong rgs with selected phenotypes from multiple domains, but hardly with any of the classical biomarkers thought to be associated with AGG. Significant genetic correlations were observed with most psychiatric and psychological traits (range |rg|: 0.19-1.00), except for obsessive-compulsive disorder. Aggression had a negative genetic correlation (rg=∌-0.5) with cognitive traits and age at first birth. Aggression was strongly genetically correlated with smoking phenotypes (range |rg| : 0.46-0.60). The genetic correlations between aggression and psychiatric disorders were weaker for teacher-reported AGG than for mother- and self-reported AGG. The current GWAMA of childhood aggression provides a powerful tool to interrogate the rater-specific genetic etiology of AGG.</p

    Can climate matching predict the current and future climatic suitability of the UK for the establishment of non-native birds?

    No full text
    Capsule: Current UK distributions of non-native birds poorly match areas identified as being climatically suitable.Aims: Non-native species are spreading at unprecedented rates and though invasions are expected to increase under climate change, evidence for this is mixed. We assess climatic suitability throughout the UK based on the apparent match to the climate in species' native ranges and investigate potential climatic limitation within the non-native range.Methods: Climate was characterized within polygons representing the native ranges of 167 potentially invasive species. Parts of the UK with current and future climate similar to that in the native range were deemed climatically suitable. The incidence of recent observations inside and outside suitable areas was used to test hypotheses about climatic limitation of non-native ranges.Results: Climate matching suggests that 69 of 167 non-native bird species could currently find climatically suitable areas for establishment in the UK. Future climate change would see this number increase by 14% by 2080. However, observed occurrences of non-native species in the UK were not significantly correlated to climatic suitability. Only 44 of the 69 species with suitable climate in the UK were present. Moreover, 85% of species observed in the UK had some UK occurrences in climatically unsuitable areas and for 57 species their entire UK range was in climatically unsuitable areas. Similar results were apparent for the subset of 12 species with established UK populations.Conclusions: Climate matching provides a relatively poor indication of the extent of current and future suitable areas because species can adapt to new climates or other factors constrain the native range and many climatically suitable areas are currently unoccupied. Improvements to climate matching techniques and ongoing surveillance are required to refine predictions to support effective management policies.</p

    Can climate matching predict the current and future climatic suitability of the UK for the establishment of non-native birds?

    No full text
    Capsule: Current UK distributions of non-native birds poorly match areas identified as being climatically suitable.Aims: Non-native species are spreading at unprecedented rates and though invasions are expected to increase under climate change, evidence for this is mixed. We assess climatic suitability throughout the UK based on the apparent match to the climate in species' native ranges and investigate potential climatic limitation within the non-native range.Methods: Climate was characterized within polygons representing the native ranges of 167 potentially invasive species. Parts of the UK with current and future climate similar to that in the native range were deemed climatically suitable. The incidence of recent observations inside and outside suitable areas was used to test hypotheses about climatic limitation of non-native ranges.Results: Climate matching suggests that 69 of 167 non-native bird species could currently find climatically suitable areas for establishment in the UK. Future climate change would see this number increase by 14% by 2080. However, observed occurrences of non-native species in the UK were not significantly correlated to climatic suitability. Only 44 of the 69 species with suitable climate in the UK were present. Moreover, 85% of species observed in the UK had some UK occurrences in climatically unsuitable areas and for 57 species their entire UK range was in climatically unsuitable areas. Similar results were apparent for the subset of 12 species with established UK populations.Conclusions: Climate matching provides a relatively poor indication of the extent of current and future suitable areas because species can adapt to new climates or other factors constrain the native range and many climatically suitable areas are currently unoccupied. Improvements to climate matching techniques and ongoing surveillance are required to refine predictions to support effective management policies.</p

    Data from: Characterising demographic contributions to observed population change in a declining migrant bird

    No full text
    Populations of Afro-Palearctic migrant birds have shown severe declines in recent decades. To identify the causes of these declines, accurate measures of both demographic rates (seasonal productivity, apparent survival, immigration) and environmental parameters will allow conservation and research actions to be targeted effectively. We used detailed observations of marked breeding birds from a ‘stronghold’ population of whinchats Saxicola rubetra in England (stable against the declining European trend) to reveal both on-site and external mechanisms that contribute to population change. From field data, a population model was developed based on demographic rates from 2011 to 2014. Observed population trends were compared to the predicted population trends to assess model-accuracy and the influence of outside factors, such as immigration. The sensitivity of the projected population growth rate to relative change in each demographic rate was also explored. Against expectations of high productivity, we identified low seasonal breeding success due to nocturnal predation and low apparent first-year survival, which led to a projected population growth rate (?) of 0.818, indicating a declining trend. However, this trend was not reflected in the census counts, suggesting that high immigration was probably responsible for buffering against this decline. Elasticity analysis indicated ? was most sensitive to changes in adult survival but with covariance between demographic rates accounted for, ? was most sensitive to changes in productivity. Our study demonstrates that high quality breeding habitat can buffer against population decline but high immigration and low productivity will expose even such stronghold populations to potential decline or abandonment if either factor is unsustainable. First-year survival also appeared low, however this result is potentially confounded by high natal dispersal. First-year survival and/or dispersal remains a significant knowledge gap that potentially undermines local solutions aimed at counteracting low productivity

    Characterising demographic contributions to observed population change in a declining migrant bird

    No full text
    Populations of Afro-Palearctic migrant birds have shown severe declines in recent decades. To identify the causes of these declines, accurate measures of both demographic rates (seasonal productivity, apparent survival, immigration) and environmental parameters will allow conservation and research actions to be targeted effectively. We used detailed observations of marked breeding birds from a ‘stronghold’ population of whinchats Saxicola rubetra in England (stable against the declining European trend) to reveal both on-site and external mechanisms that contribute to population change. From field data, a population model was developed based on demographic rates from 2011 to 2014. Observed population trends were compared to the predicted population trends to assess model-accuracy and the influence of outside factors, such as immigration. The sensitivity of the projected population growth rate to relative change in each demographic rate was also explored. Against expectations of high productivity, we identified low seasonal breeding success due to nocturnal predation and low apparent first-year survival, which led to a projected population growth rate (λ) of 0.818, indicating a declining trend. However, this trend was not reflected in the census counts, suggesting that high immigration was probably responsible for buffering against this decline. Elasticity analysis indicated λ was most sensitive to changes in adult survival but with covariance between demographic rates accounted for, most temporal variation in λ was due to variation in productivity. Our study demonstrates that high quality breeding habitat can buffer against population decline but high immigration and low productivity will expose even such stronghold populations to potential decline or abandonment if either factor is unsustainable. First-year survival also appeared low, however this result is potentially confounded by high natal dispersal. First-year survival and/or dispersal remains a significant knowledge gap that potentially undermines local solutions aimed at counteracting low productivity

    MARK recapture adults and juveniles

    No full text
    MARK recapture data for whinchats ringed as adults and those ringed as nestlings

    nests_data_for_logistic_exposure_models

    No full text
    This is a csv file of the nest visits used in the logistic exposure models. More detailed nest records for each year are available on request subject to the planned usage of the data
    corecore