9 research outputs found

    Inhibition of DNA methyltransferase leads to increased genomic 5-hydroxymethylcytosine levels in hematopoietic cells.

    Get PDF
    5-Hydroxymethylcytosine (5hmC) is produced from 5-methylcytosine (5mC) by Ten-eleven translocation (TET) dioxygenases. The epigenetic modification 5hmC has crucial roles in both cellular development and differentiation. The 5hmC level is particularly high in the brain. While 5mC is generally associated with gene silencing/reduced expression, 5hmC is a more permissive epigenetic mark. To understand its physiological function, an easy and accurate quantification method is required. Here, we have developed a novel LC-MS/MS-based approach to quantify both genomic 5mC and 5hmC contents. The method is based on the liberation of nucleobases by formic acid. Applying this method, we characterized the levels of DNA methylation and hydroxymethylation in mouse brain and liver, primary hepatocytes, and various cell lines. Using this approach, we confirm that the treatment of different cell lines with the DNA methyltransferase inhibitor 5-aza-2\u27-deoxycytidine leads to a decrease in 5mC content. This decrease was accompanied by an increase in 5hmC levels in cell lines of hematopoietic origin. Finally, we showed that ascorbate elevates the levels of 5hmC and augments the effect of 5-aza-2\u27-deoxycytidine without significantly influencing 5mC levels

    The transcriptional activity of hepatocyte nuclear factor 4 alpha is inhibited via phosphorylation by ERK1/2

    Get PDF
    Hepatocyte nuclear factor 4 alpha (HNF4alpha) nuclear receptor is a master regulator of hepatocyte development, nutrient transport and metabolism. HNF4alpha is regulated both at the transcriptional and post-transcriptional levels by different mechanisms. Several kinases (PKA, PKC, AMPK) were shown to phosphorylate and decrease the activity of HNF4alpha. Activation of the ERK1/2 signalling pathway, inducing proliferation and survival, inhibits the expression of HNF4alpha. However, based on our previous results we hypothesized that HNF4alpha is also regulated at the post-transcriptional level by ERK1/2. Here we show that ERK1/2 is capable of directly phosphorylating HNF4alpha in vitro at several phosphorylation sites including residues previously shown to be targeted by other kinases, as well. Furthermore, we also demonstrate that phosphorylation of HNF4alpha leads to a reduced trans-activational capacity of the nuclear receptor in luciferase reporter gene assay. We confirm the functional relevance of these findings by demonstrating with ChIP-qPCR experiments that 30-minute activation of ERK1/2 leads to reduced chromatin binding of HNF4alpha. Accordingly, we have observed decreasing but not disappearing binding of HNF4alpha to the target genes. In addition, 24-hour activation of the pathway further decreased HNF4alpha chromatin binding to specific loci in ChIP-qPCR experiments, which confirms the previous reports on the decreased expression of the HNF4a gene due to ERK1/2 activation. Our data suggest that the ERK1/2 pathway plays an important role in the regulation of HNF4alpha-dependent hepatic gene expression

    Evolutionary origin and functional divergence of totipotent cell homeobox genes in eutherian mammals

    No full text
    BACKGROUND: A central goal of evolutionary biology is to link genomic change to phenotypic evolution. The origin of new transcription factors is a special case of genomic evolution since it brings opportunities for novel regulatory interactions and potentially the emergence of new biological properties. RESULTS: We demonstrate that a group of four homeobox gene families (Argfx, Leutx, Dprx, Tprx), plus a gene newly described here (Pargfx), arose by tandem gene duplication from the retinal-expressed Crx gene, followed by asymmetric sequence evolution. We show these genes arose as part of repeated gene gain and loss events on a dynamic chromosomal region in the stem lineage of placental mammals, on the forerunner of human chromosome 19. The human orthologues of these genes are expressed specifically in early embryo totipotent cells, peaking from 8-cell to morula, prior to cell fate restrictions; cow orthologues have similar expression. To examine biological roles, we used ectopic gene expression in cultured human cells followed by high-throughput RNA-seq and uncovered extensive transcriptional remodelling driven by three of the genes. Comparison to transcriptional profiles of early human embryos suggest roles in activating and repressing a set of developmentally-important genes that spike at 8-cell to morula, rather than a general role in genome activation. CONCLUSIONS: We conclude that a dynamic chromosome region spawned a set of evolutionarily new homeobox genes, the ETCHbox genes, specifically in eutherian mammals. After these genes diverged from the parental Crx gene, we argue they were recruited for roles in the preimplantation embryo including activation of genes at the 8-cell stage and repression after morula. We propose these new homeobox gene roles permitted fine-tuning of cell fate decisions necessary for specification and function of embryonic and extra-embryonic tissues utilised in mammalian development and pregnancy.This work was supported primarily by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013 ERC grant 268513) to PWHH. In addition, support was provided by the Spanish Ministry of Economy and Competitiveness (BFU2014-55076-P) to MI and a fellowship from ‘la Caixa’-Severo Ochoa to CDR

    Additional file 9: Table S2. of Evolutionary origin and functional divergence of totipotent cell homeobox genes in eutherian mammals

    No full text
    Human and bovine adult and developmental data used for expression profiling. Sequence Read Archive database accessions for RNA-seq datasets used for expression profiling of genes in Fig. 4b and c. (XLSX 26 kb

    Phosphorylated amino acid residues identified by mass spectrometry.

    No full text
    <p><i>In vitro</i> phosphorylated HNF4α was subjected to mass spectrometry analysis. The fragments containing the phosphorylated amino acid residues correspond to phosphorylation sites on the HNF4α protein. Detected phosphorylation sites (serine/threonine residues) in the cryptic fragments are marked bold and underlined. Affected phosphorylation sites appear in the DNA binding domain (DBD), the hinge, the ligand-binding domain (LBD) and the C-terminus of HNF4α, as well.</p

    Evolutionary origin and functional divergence of totipotent cell homeobox genes in eutherian mammals

    Get PDF
    BACKGROUND: A central goal of evolutionary biology is to link genomic change to phenotypic evolution. The origin of new transcription factors is a special case of genomic evolution since it brings opportunities for novel regulatory interactions and potentially the emergence of new biological properties. RESULTS: We demonstrate that a group of four homeobox gene families (Argfx, Leutx, Dprx, Tprx), plus a gene newly described here (Pargfx), arose by tandem gene duplication from the retinal-expressed Crx gene, followed by asymmetric sequence evolution. We show these genes arose as part of repeated gene gain and loss events on a dynamic chromosomal region in the stem lineage of placental mammals, on the forerunner of human chromosome 19. The human orthologues of these genes are expressed specifically in early embryo totipotent cells, peaking from 8-cell to morula, prior to cell fate restrictions; cow orthologues have similar expression. To examine biological roles, we used ectopic gene expression in cultured human cells followed by high-throughput RNA-seq and uncovered extensive transcriptional remodelling driven by three of the genes. Comparison to transcriptional profiles of early human embryos suggest roles in activating and repressing a set of developmentally-important genes that spike at 8-cell to morula, rather than a general role in genome activation. CONCLUSIONS: We conclude that a dynamic chromosome region spawned a set of evolutionarily new homeobox genes, the ETCHbox genes, specifically in eutherian mammals. After these genes diverged from the parental Crx gene, we argue they were recruited for roles in the preimplantation embryo including activation of genes at the 8-cell stage and repression after morula. We propose these new homeobox gene roles permitted fine-tuning of cell fate decisions necessary for specification and function of embryonic and extra-embryonic tissues utilised in mammalian development and pregnancy.This work was supported primarily by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013 ERC grant 268513) to PWHH. In addition, support was provided by the Spanish Ministry of Economy and Competitiveness (BFU2014-55076-P) to MI and a fellowship from ‘la Caixa’-Severo Ochoa to CDR
    corecore