28 research outputs found

    Cognitive Reserve and the Prevention of Dementia: the Role of Physical and Cognitive Activities

    Get PDF
    Purpose of Review: The article discusses the two most significant modifiable risk factors for dementia, namely, physical inactivity and lack of stimulating cognitive activity, and their effects on developing cognitive reserve. Recent Findings: Both of these leisure-time activities were associated with significant reductions in the risk of dementia in longitudinal studies. In addition, physical activity, particularly aerobic exercise, is associated with less age-related gray and white matter loss and with less neurotoxic factors. On the other hand, cognitive training studies suggest that training for executive functions (e.g., working memory) improves prefrontal network efficiency, which provides support to brain functioning in the face of cognitive decline. Summary: While physical activity preserves neuronal structural integrity and brain volume (hardware), cognitive activity strengthens the functioning and plasticity of neural circuits (software), thus supporting cognitive reserve in different ways. Future research should examine whether lifestyle interventions incorporating these two domains can reduce incident dementia

    Does Aerobic Exercise Influence Intrinsic Brain Activity? An Aerobic Exercise Intervention among Healthy Old Adults

    No full text
    Previous studies have indicated that aerobic exercise could reduce age related decline in cognition and brain functioning. Here we investigated the effects of aerobic exercise on intrinsic brain activity. Sixty sedentary healthy males and females (64–78 years) were randomized into either an aerobic exercise group or an active control group. Both groups recieved supervised training, 3 days a week for 6 months. Multimodal brain imaging data was acquired before and after the intervention, including 10 min of resting state brain functional magnetic resonance imaging (rs-fMRI) and arterial spin labeling (ASL). Additionally, a comprehensive battery of cognitive tasks assessing, e.g., executive function and episodic memory was administered. Both the aerobic and the control group improved in aerobic capacity (VO2-peak) over 6 months, but a significant group by time interaction confirmed that the aerobic group improved more. Contrary to our hypothesis, we did not observe any significant group by time interactions with regard to any measure of intrinsic activity. To further probe putative relationships between fitness and brain activity, we performed post hoc analyses disregarding group belongings. At baseline, VO2-peak was negativly related to BOLD-signal fluctuations (BOLDSTD) in mid temporal areas. Over 6 months, improvements in aerobic capacity were associated with decreased connectivity between left hippocampus and contralateral precentral gyrus, and positively to connectivity between right mid-temporal areas and frontal and parietal regions. Independent component analysis identified a VO2-related increase in coupling between the default mode network and left orbitofrontal cortex, as well as a decreased connectivity between the sensorimotor network and thalamus. Extensive exploratory data analyses of global efficiency, connectome wide multivariate pattern analysis (connectome-MVPA), as well as ASL, did not reveal any relationships between aerobic fitness and intrinsic brain activity. Moreover, fitness-predicted changes in functional connectivity did not relate to changes in cognition, which is likely due to absent cross-sectional or longitudinal relationships between VO2-peak and cognition. We conclude that the aerobic exercise intervention had limited influence on patterns of intrinsic brain activity, although post hoc analyses indicated that individual changes in aerobic capacity preferentially influenced mid-temporal brain areas

    Structural but not functional neuroplasticity one year after effective cognitive behaviour therapy for social anxiety disorder

    No full text
    Abstract Effective psychiatric treatments ameliorate excessive anxiety and induce neuroplasticity immediately after the intervention, indicating that emotional components in the human brain are rapidly adaptable. Still, the interplay between structural and functional neuroplasticity is poorly understood, and studies of treatment-induced long-term neuroplasticity are rare. Functional and structural magnetic resonance imaging (using 3 T MRI) was performed in 13 subjects with social anxiety disorder on 3 occasions over 1 year. All subjects underwent 9 weeks of Internet-delivered cognitive behaviour therapy in a randomized cross-over design and independent assessors used the Clinically Global Impression-Improvement (CGI-I) scale to determine treatment response. Gray matter (GM) volume, assessed with voxel-based morphometry, and functional blood-oxygen level-dependent (BOLD) responsivity to self-referential criticism were compared between treatment responders and non-responders using 2 Ã\u97 2 (group Ã\u97 time; pretreatment to follow-up) ANOVA. At 1-year follow-up, 7 (54%) subjects were classified as CGI-I responders. Left amygdala GM volume was more reduced in responders relative to non-responders from pretreatment to 1-year follow-up (Z = 3.67, Family-Wise Error corrected p = 0.02). In contrast to previous short-term effects, altered BOLD activations to self-referential criticism did not separate responder groups at follow-up. The structure and function of the amygdala changes immediately after effective psychological treatment of social anxiety disorder, but only reduced amygdala GM volume, and not functional activity, is associated with a clinical response 1 year after CBT.Funding agencies: Swedish Research Council; Linkoping University; Swedish Council for Working Life and Social Research; Capio Research Foundation; PRIMA Research Foundation</p

    Neuroplasticity in response to cognitive behavior therapy for social anxiety disorder

    No full text
    Patients with anxiety disorders exhibit excessive neural reactivity in the amygdala, which can be normalized by effective treatment like cognitive behavior therapy (CBT). Mechanisms underlying the brains adaptation to anxiolytic treatments are likely related both to structural plasticity and functional response alterations, but multimodal neuroimaging studies addressing structure-function interactions are currently missing. Here, we examined treatment-related changes in brain structure (gray matter (GM) volume) and function (blood-oxygen level dependent, BOLD response to self-referential criticism) in 26 participants with social anxiety disorder randomly assigned either to CBT or an attention bias modification control treatment. Also, 26 matched healthy controls were included. Significant time x treatment interactions were found in the amygdala with decreases both in GM volume (family-wise error (FWE) corrected P-FWE = 0.02) and BOLD responsivity (P-FWE = 0.01) after successful CBT. Before treatment, amygdala GM volume correlated positively with anticipatory speech anxiety (P-FWE = 0.04), and CBT-induced reduction of amygdala GM volume (pre-post) correlated positively with reduced anticipatory anxiety after treatment (P-FWE &amp;lt;= 0.05). In addition, we observed greater amygdala neural responsivity to self-referential criticism in socially anxious participants, as compared with controls (P-FWE = 0.029), before but not after CBT. Further analysis indicated that diminished amygdala GM volume mediated the relationship between decreased neural responsivity and reduced social anxiety after treatment (P = 0.007). Thus, our results suggest that improvement-related structural plasticity impacts neural responsiveness within the amygdala, which could be essential for achieving anxiety reduction with CBT.Funding Agencies|Linkoping University; Swedish Research Council; Swedish Council for Working Life and Social Research; LJ Boethius Foundation; PRIMA Psychiatry Research Foundation</p

    Neuroplasticity in Response to Cognitive Behavior Therapy for Social Anxiety Disorder

    No full text
    Background: Functional magnetic resonance imaging studies have consistently showed increased amygdala responsiveness in Social Anxiety Disorder (SAD), which decreases after anxiolytic treatment (e.g., Cognitive Behavior Therapy, CBT). However, less is known about treatment-related structural gray matter (GM) volume changes. Furthermore, the relationship between functional and structural plasticity are largely neglected in the literature. Methods: Functional and structural neuroimaging were used to assess 26 SAD patients. The patients were randomized to receive Internet-delivered CBT (ICBT), or a control condition. The Clinical Global Impression-Improvement scale (CGI-I) determined clinical response. Also, we assessed level of anticipatory speech anxiety. At pre-, and post-treatment, blood-oxygen-level dependent (BOLD) responses to self-referential criticism were recorded, and structural data was examined with voxel-based morphometry (VBM). Results: CGI-I assessment showed that eight (61%) patients were deemed as responders following ICBT, and 3 (23%) in the control group (&amp;#967;2=3.90, p=0.047). Time ˙ treatment interactions showed decreased amygdala BOLD response (Z=3.28, p=0.015, Family Wise-Error corrected, FWE), and amygdala GM volume (Z=3.30, pFWE=0.024) after ICBT. At baseline, GM amygdala volume was correlated with anticipatory anxiety (Z=2.96, pFWE=0.040), and amygdala GM atrophy following ICBT was correlated with decreased anticipatory anxiety (Z&gt;2.83, pFWE&lt;0.055). Moreover, the amygdala BOLD response change was associated with the local GM atrophy after ICBT (Z&gt;2.45, pFWE&lt;0.029). Conclusions: This is the first randomized study to evaluate multiple imaging modalities and the brain´s plasticity to an anxiolytic treatment. The functional and structural plasticity was highly correlated as indicated by anxiety-related BOLD signal change and GM volume in the amygdala following ICBT

    The Effects of Working Memory Updating Training in Parkinson’s Disease : A Feasibility and Single-Subject Study on Cognition, Movement and Functional Brain Response

    No full text
    In Parkinson’s disease (PD), the fronto-striatal network is involved in motor and cognitive symptoms. Working memory (WM) updating training engages this network in healthy populations, as observed by improved cognitive performance and increased striatal BOLD signal. This two-part study aimed to assess the feasibility of WM updating training in PD and measure change in cognition, movement and functional brain response in one individual with PD after WM updating training. A feasibility and single-subject (FL) study were performed in which patients with PD completed computerized WM updating training. The outcome measures were the pre-post changes in criterion and transfer cognitive tests; cognitive complaints; psychological health; movement kinematics; and task-related BOLD signal. Participants in the feasibility study showed improvements on the criterion tests at post-test. FL displayed the largest improvements on the criterion tests and smaller improvements on transfer tests. Furthermore, FL reported improved cognitive performance in everyday life. A shorter onset latency and smoother upper-limb goal-directed movements were measured at post-test, as well as increased activation within the striatum and decreased activation throughout the fronto-parietal WM network. This two-part study demonstrated that WM updating training is feasible to complete for PD patients and that change occurred in FL at post-test in the domains of cognition, movement and functional brain response

    Predicting long-term outcome of Internet-delivered cognitive behavior therapy for social anxiety disorder using fMRI and support vector machine learning

    No full text
    Cognitive behavior therapy (CBT) is an effective treatment for social anxiety disorder (SAD), but many patients do not respond sufficiently and a substantial proportion relapse after treatment has ended. Predicting an individual's long-term clinical response therefore remains an important challenge. This study aimed at assessing neural predictors of long-term treatment outcome in participants with SAD 1 year after completion of Internet-delivered CBT (iCBT). Twenty-six participants diagnosed with SAD underwent iCBT including attention bias modification for a total of 13 weeks. Support vector machines (SVMs), a supervised pattern recognition method allowing predictions at the individual level, were trained to separate long-term treatment responders from nonresponders based on blood oxygen level-dependent (BOLD) responses to self-referential criticism. The Clinical Global Impression-Improvement scale was the main instrument to determine treatment response at the 1-year follow-up. Results showed that the proportion of long-term responders was 52% (12/23). From multivariate BOLD responses in the dorsal anterior cingulate cortex (dACC) together with the amygdala, we were able to predict long-term response rate of iCBT with an accuracy of 92% (confidence interval 95% 73.2-97.6). This activation pattern was, however, not predictive of improvement in the continuous Liebowitz Social Anxiety Scale-Self-report version. Follow-up psychophysiological interaction analyses revealed that lower dACC-amygdala coupling was associated with better long-term treatment response. Thus, BOLD response patterns in the fear-expressing dACC-amygdala regions were highly predictive of long-term treatment outcome of iCBT, and the initial coupling between these regions differentiated long-term responders from nonresponders. The SVM-neuroimaging approach could be of particular clinical value as it allows for accurate prediction of treatment outcome at the level of the individual
    corecore