137 research outputs found
ApoB100-LDL Acts as a Metabolic Signal from Liver to Peripheral Fat Causing Inhibition of Lipolysis in Adipocytes
International audienceBACKGROUND: Free fatty acids released from adipose tissue affect the synthesis of apolipoprotein B-containing lipoproteins and glucose metabolism in the liver. Whether there also exists a reciprocal metabolic arm affecting energy metabolism in white adipose tissue is unknown. METHODS AND FINDINGS: We investigated the effects of apoB-containing lipoproteins on catecholamine-induced lipolysis in adipocytes from subcutaneous fat cells of obese but otherwise healthy men, fat pads from mice with plasma lipoproteins containing high or intermediate levels of apoB100 or no apoB100, primary cultured adipocytes, and 3T3-L1 cells. In subcutaneous fat cells, the rate of lipolysis was inversely related to plasma apoB levels. In human primary adipocytes, LDL inhibited lipolysis in a concentration-dependent fashion. In contrast, VLDL had no effect. Lipolysis was increased in fat pads from mice lacking plasma apoB100, reduced in apoB100-only mice, and intermediate in wild-type mice. Mice lacking apoB100 also had higher oxygen consumption and lipid oxidation. In 3T3-L1 cells, apoB100-containing lipoproteins inhibited lipolysis in a dose-dependent fashion, but lipoproteins containing apoB48 had no effect. ApoB100-LDL mediated inhibition of lipolysis was abolished in fat pads of mice deficient in the LDL receptor (Ldlr(-/-)Apob(100/100)). CONCLUSIONS: Our results show that the binding of apoB100-LDL to adipocytes via the LDL receptor inhibits intracellular noradrenaline-induced lipolysis in adipocytes. Thus, apoB100-LDL is a novel signaling molecule from the liver to peripheral fat deposits that may be an important link between atherogenic dyslipidemias and facets of the metabolic syndrome
Role of Heparanase on Hepatic Uptake of Intestinal Derived Lipoprotein and Fatty Streak Formation in Mice
BACKGROUND: Heparanase modulates the level of heparan sulfate proteoglycans (HSPGs) which have an important role in multiple cellular processes. Recent studies indicate that HSPGs have an important function in hepatic lipoprotein handling and processes involving removal of lipoprotein particles. PRINCIPAL FINDINGS: To determine the effects of decreased HSPGs chain length on lipoprotein metabolism and atherosclerosis, transgenic mice over-expressing the human heparanase gene were studied. Hepatic lipid uptake in hpa-Tg mice were evaluated by giving transgenic mice oral fat loads and labeled retinol. Sections of aorta from mice over-expressing heparanase (hpa-Tg) and controls (C57/BL6) fed an atherogenic diet were examined for evidence of atherosclerosis. Heparanase over-expression results in reduced hepatic clearance of postprandial lipoproteins and higher levels of fasting and postprandial serum triglycerides. Heparanase over-expression also induces formation of fatty streaks in the aorta. The mean lesion cross-sectional area in heparanase over-expressing mice was almost 6 times higher when compared to control mice (23,984 µm(2)±5,922 vs. 4,189 µm(2)±1,130, p<0.001). CONCLUSIONS: Over-expression of heparanase demonstrates the importance of HSPGs for the uptake of intestinal derived lipoproteins and its role in the formation of fatty streaks
Proinsulin Atypical Maturation and Disposal Induces Extensive Defects in Mouse Ins2+/Akita β-Cells
Because of its low relative folding rate and plentiful manufacture in β-cells, proinsulin maintains a homeostatic balance of natively and plentiful non-natively folded states (i.e., proinsulin homeostasis, PIHO) through the integration of maturation and disposal processes. PIHO is susceptible to genetic and environmental influences, and its disorder has been critically linked to defects in β-cells in diabetes. To explore this hypothesis, we performed polymerase chain reaction (PCR), metabolic-labeling, immunoblotting, and histological studies to clarify what defects result from primary disorder of PIHO in model Ins2+/Akita β-cells. We used T antigen-transformed Ins2+/Akita and control Ins2+/+ β-cells established from Akita and wild-type littermate mice. In Ins2+/Akita β-cells, we found no apparent defect at the transcriptional and translational levels to contribute to reduced cellular content of insulin and its precursor and secreted insulin. Glucose response remained normal in proinsulin biosynthesis but was impaired for insulin secretion. The size and number of mature insulin granules were reduced, but the size/number of endoplasmic reticulum, Golgi, mitochondrion, and lysosome organelles and vacuoles were expanded/increased. Moreover, cell death increased, and severe oxidative stress, which manifested as increased reactive oxygen species, thioredoxin-interacting protein, and protein tyrosine nitration, occurred in Ins2+/Akita β-cells and/or islets. These data show the first clear evidence that primary PIHO imbalance induces severe oxidative stress and impairs glucose-stimulated insulin release and β-cell survival as well as producing other toxic consequences. The defects disclosed/clarified in model Ins2+/Akita β-cells further support a role of the genetic and stress-susceptible PIHO disorder in β-cell failure and diabetes
Triglycerides and blood pressure in relation to circulating CD34-positive cell levels among community-dwelling elderly Japanese men: a cross-sectional study
Background: Triglycerides are reported to be positively associated with blood pressure (both systolic and diastolic). However, in a previous study, we reported a significant positive association between triglycerides and circulating CD34-positive cells (endothelial repair) among non-hypertensive, but not hypertensive, participants. Since hypertension and endothelial dysfunction have a bi-directional association (vicious cycle), the status of circulating CD34-positive cells may influence the association between triglycerides and hypertension. Methods: Since antihypertensive medication use may influence results of the present study, we conducted a cross-sectional study of 327 community dwelling elderly (aged 60-69 years) Japanese participants who were not taking anti-hypertensive medication and who had participated in a general health check-up in 2013-2015. Results: Participants were classified into two groups based on median values of circulating CD34-positive cells (0.93 cells/μL). For participants with lower circulating CD34-positive cells (n = 165), a significant positive association was seen between triglycerides and blood pressure, but not for participants with higher circulating CD34-positive cells (n = 162). The multivariable standardized parameter estimates (β) and p values of systolic blood pressure and diastolic blood pressure were 0.23 (p = 0.007) and 0.18 (p = 0.036) for participants with lower circulating CD34-positive cells and 0.08 (p = 0.409) and 0.03 (p = 0.786) for those with higher circulating CD34-positive cells. Conclusion: A significant positive association between triglycerides and blood pressure exists among those with lower, but not higher, circulating CD34-positive cells. The level of circulating CD34-positive cells acts as a determinant factor for the association between triglycerides and blood pressure
Antioxidant intake among Brazilian adults - The Brazilian Osteoporosis Study (BRAZOS): a cross-sectional study
<p>Abstract</p> <p>Background</p> <p>Antioxidant nutrient intake and the lesser formation of free radicals seem to contribute to chronic diseases. The aim of the present study was to evaluate the intake profile of the main dietary antioxidants in a representative sample of the adult Brazilian population and discuss the main consequences of a low intake of these micronutrients on overall health.</p> <p>Methods</p> <p>The sample comprised 2344 individuals aged 40 years or older from 150 cities and was based on a probabilistic sample from official data. The research was conducted through in-home interviews administered by a team trained for this purpose. Dietary intake information was obtained through 24-h recall. The Nutrition Data System for Research software program was used to analyze data on the intake of vitamins A, C and E, selenium and zinc, which was compared to Dietary Reference Intakes (DRIs). Differences in intake according to sex, anthropometrics, socioeconomic status and region were also evaluated. The SPSS statistical package (version 13) was used for the statistical analysis. P-values < 0.05 were considered significant.</p> <p>Results</p> <p>Higher proportions of low intake in relation to recommended values were found for vitamin E (99.7%), vitamin A (92.4%) and vitamin C (85.1%) in both genders. Intake variations were found between different regions, which may reflect cultural habits.</p> <p>Conclusion</p> <p>These results should lead to the development of public health policies that encourage educational strategies for improving the intake of micronutrients, which are essential to overall health and prevention of non-communicable diseases.</p
Metabolic response to a ketogenic breakfast in the healthy elderly.
OBJECTIVE:
To determine whether the metabolism of glucose or ketones differs in the healthy elderly compared to young or middle-aged adults during mild, short-term ketosis induced by a ketogenic breakfast.
DESIGN AND PARTICIPANTS:
Healthy subjects in three age groups (23 +/- 1, 50 +/- 1 and 76 +/- 2 y old) were given a ketogenic meal and plasma beta -hydroxybutyrate, glucose, insulin, triacylglycerols, total cholesterol, non-esterified fatty acids and breath acetone were measured over the subsequent 6 h. Each subject completed the protocol twice in order to determine the oxidation of a tracer dose of both carbon-13 (13C) glucose and 13C-beta-hydroxybutyrate. The tracers were given separately in random order. Apolipoprotein E genotype was also determined in all subjects.
RESULTS:
Plasma glucose decreased and beta-hydroxybutyrate, acetone and insulin increased similarly over 6 h in all three groups after the ketogenic meal. There was no significant change in cholesterol, triacylglycerols or non-esterified fatty acids over the 6 h. 13C-glucose and 13C-beta-hydroxybutyrate oxidation peaked at 2-3 h postdose for all age groups. Cumulative 13C-glucose oxidation over 24 h was significantly higher in the elderly but only versus the middle-aged group. There was no difference in cumulative 13C-beta-hydroxybutyrate oxidation between the three groups. Apolipoprotein E (epsilon 4) was associated with elevated fasting cholesterol but was unrelated to the other plasma metabolites.
CONCLUSION:
Elderly people in relatively good health have a similar capacity to produce ketones and to oxidize 13C-beta-hydroxybutyrate as middle-aged or young adults, but oxidize 13C-glucose a little more rapidly than healthy middle-aged adult
- …