425 research outputs found
Master of Science
thesisAlthough many studies have examined acoustic and sociolinguistic differences between male and female speech, the relationship between talker speaking style and perceived gender has not yet been explored. The present study attempts to determine whether clear speech, a style adopted by talkers who perceive some barrier to effective communication, shifts perceptions of femininity for male and female talkers
The Ependyma of the Cat Central Canal, with Particular Reference to its Mitochondria-Containing Bulbs
The ultrastructure of the ependyma in the central canal of adult cats was examined in both the scanning and the transmission electron microscopes (SEM and TEM).
The same morphological details were seen in the ependyma of the central canal as have so frequently been described in the ependyma of the brain ventricular system, for example bundles of cilia, single cilia, microvilli and occasional small cytoplasmic protrusions. The supraependymal cells and supraependymal nerve fibers found in the central canal also resembled those seen in the ventricular system.
The most striking feature of the canal ependyma were the large, spherical bodies containing numerous mitochondria. They are therefore called mitochondria-containing bulbs. In sections the bulbs were seen to be connected by long, slender stalks to neurons in subependymal position. In some respects the mitochondria-containing bulbs resemble the processes of cerebrospinal fluid-contacting neurons
The CXCL10/CXCR3 Axis and Cardiac Inflammation: Implications for Immunotherapy to Treat Infectious and Noninfectious Diseases of the Heart.
Accumulating evidence reveals involvement of T lymphocytes and adaptive immunity in the chronic inflammation associated with infectious and noninfectious diseases of the heart, including coronary artery disease, Kawasaki disease, myocarditis, dilated cardiomyopathies, Chagas, hypertensive left ventricular (LV) hypertrophy, and nonischemic heart failure. Chemokine CXCL10 is elevated in cardiovascular diseases, along with increased cardiac infiltration of proinflammatory Th1 and cytotoxic T cells. CXCL10 is a chemoattractant for these T cells and polarizing factor for the proinflammatory phenotype. Thus, targeting the CXCL10 receptor CXCR3 is a promising therapeutic approach to treating cardiac inflammation. Due to biased signaling CXCR3 also couples to anti-inflammatory signaling and immunosuppressive regulatory T cell formation when activated by CXCL11. Numbers and functionality of regulatory T cells are reduced in patients with cardiac inflammation, supporting the utility of biased agonists or biologicals to simultaneously block the pro-inflammatory and activate the anti-inflammatory actions of CXCR3. Other immunotherapy strategies to boost regulatory T cell actions include intravenous immunoglobulin (IVIG) therapy, adoptive transfer, immunoadsorption, and low-dose interleukin-2/interleukin-2 antibody complexes. Pharmacological approaches include sphingosine 1-phosphate receptor 1 agonists and vitamin D supplementation. A combined strategy of switching CXCR3 signaling from pro- to anti-inflammatory and improving Treg functionality is predicted to synergistically lessen adverse cardiac remodeling
Recommended from our members
Conflicting vascular and metabolic impact of the IL-33/sST2 axis.
Interleukin 33 (IL-33), which is expressed by several immune cell types, endothelial and epithelial cells, and fibroblasts, is a cytokine of the IL-1 family that acts both intra- and extracellularly to either enhance or resolve the inflammatory response. Intracellular IL-33 acts in the nucleus as a regulator of transcription. Once released from cells by mechanical stress, inflammatory cytokines, or necrosis, extracellular IL-33 is proteolytically processed to act in an autocrine/paracrine manner as an 'alarmin' on neighbouring or various immune cells expressing the ST2 receptor. Thus, IL-33 may serve an important role in tissue preservation and repair in response to injury; however, the actions of IL-33 are dampened by a soluble form of ST2 (sST2) that acts as a decoy receptor and is produced by endothelial and certain immune cells. Accumulating evidence supports the conclusion that sST2 is a biomarker of vascular health with diagnostic and/or prognostic value in various cardiovascular diseases, including coronary artery disease, myocardial infarction, atherosclerosis, giant-cell arteritis, acute aortic dissection, and ischaemic stroke, as well as obesity and diabetes. Although sST2 levels are positively associated with cardiovascular disease severity, the assumption that IL-33 is always beneficial is naïve. It is increasingly appreciated that the pathophysiological importance of IL-33 is highly dependent on cellular and temporal expression. Although IL-33 is atheroprotective and may prevent obesity and type 2 diabetes by regulating lipid metabolism, IL-33 appears to drive endothelial inflammation. Here, we review the current knowledge of the IL-33/ST2/sST2 signalling network and discuss its pathophysiological and translational implications in cardiovascular diseases
Cardiac STAT3 Deficiency Impairs Contractility and Metabolic Homeostasis in Hypertension
Signal transducer and activator of transcription 3 (STAT3) protects the heart from acute ischemic stress. However, the importance of STAT3 to the heart in chronic stress, such as hypertension, is not known. To study this, we used cardiomyocyte-targeted STAT3 knockout (KO) mice and ANG II infusion by osmotic minipumps. After 4 weeks, ANG II induced similar cardiac hypertrophy in wild type (WT) and cardiac Cre-expressing control (CTRL) mice with no impairment of cardiac function. In contrast, STAT3 KO mice exhibited reduced contractile function but similar hypertrophy to CTRL mice. Ejection fraction and fractional shortening decreased by 22.5% and 27.3%, respectively. Since STAT3 has direct protective effects on mitochondrial function, we examined rates of glucose and oleate oxidation by isolated perfused hearts using a Langendorff system. Hearts of ANG II-treated STAT3 KO and CTRL mice had similar rates of oleate oxidation as saline-infused WT mice. Rates of glucose oxidation were similar between hearts of WT plus saline and CTRL plus ANG II mice; however, glucose oxidation was increased by 66% in hearts of ANG II-treated STAT3 KO mice. The ratio of maximal ATP yield from glucose to fatty acid oxidation was 21.1 ± 3.1 in hearts of ANG II-treated STAT3 KO mice vs. 12.6 ± 2.2 in hearts of ANG II-treated CTRL mice. Lactate production was also elevated in hearts of ANG II-treated STAT3 KO mice by 162% compared to ANG II-treated CTRL mice. Our findings indicate that (1) STAT3 is important for maintaining contractile function and metabolic homeostasis in the hypertensive heart, and (2) STAT3 deficiency promotes a switch toward glucose utilization
STAT3 and Endothelial Cell—Cardiomyocyte Dialog in Cardiac Remodeling
This article presents an overview of the central role of STAT3 in the crosstalk between endothelial cells and cardiac myocytes in the heart. Endothelial cell STAT3 has a key role in inflammation that underlies cardiovascular disease and impacts on cardiac structure and function. STAT3 in endothelial cells contributes to adverse cardiomyocyte genetic reprograming, for instance, during peripartum cardiomyopathy. Conversely, cardiomyocyte STAT3 is important for maintaining endothelial cell function and capillary integrity with aging and hypertension. In addition, STAT3 serves as a sentinel for stress in the heart. Recent evidence has revealed that the redox nature of STAT3 is regulated, and STAT3 is responsive to oxidative stress (ischemia-reperfusion) so as to induce protective genes. At the level of the mitochondrion, STAT3 is important in regulating reactive oxygen species (ROS) formation, metabolism, and mitochondrial integrity. STAT3 may also control calcium release from the ER so as to limit its subsequent uptake by mitochondria and the induction of cell death. Under normal conditions, some STAT3 localizes to intercalated discs of cardiomyocytes and serves to transmit pro-fibrotic gene induction signals in the nucleus with increased blood pressure. Further research is needed to understand how the sentinel role of STAT3 in both endothelial cells and cardiomyocytes is integrated in order to coordinate the response of the heart to both physiological and pathological demands
Successful new product development by optimizing development process effectiveness in highly regulated sectors: the case of the Spanish medical devices sector
Rapid development and commercialization of new products is of vital importance for small and medium sized enterprises (SME) in regulated sectors. Due to strict regulations, competitive advantage can hardly be achieved through the effectiveness of product concepts only. If an SME in a highly regulated sector wants to excell in new product development (NPD) performance, the company should focus on the flexibility, speed, and productivity of its NPD function: i.e. the development process effectiveness. Our main research goals are first to explore if SMEs should focus on their their development process effectiveness rather than on their product concept effectiveness to achieve high NPD performance; and second, to explore whether a shared pattern in the organization of the NPD function can be recognized to affect NPD performance positively. The medical devices sector in Spain is used as an example of a\ud
highly regulated sector. A structured survey among 11 SMEs, of which 2 were studied also as in in-depth case studies, led to the following results. First of all, indeed the companies in the dataset which focused on the effectiveness of their development process, stood out in NPD performance. Further, the higher performing companies did have a number of commonalities in the organisation of their NPD function: 1) The majority of the higher performing firms had an NPD strategy characterized by a predominantly incremental project portfolio.\ud
2) a) Successful firms with an incremental project portfolio combined this with a functional team structure b) Successful firms with a radical project portfolio combined this with a heavyweight or autonomous team structure.\ud
3) A negative reciprocal relationship exists between formalization of the NPD processes and the climate of the NPD function, in that a formalized NPD process and an innovative climate do not seem to reinforce each other. Innovative climate combined with an informal NPD process does however contribute positively to NPD performance. This effect was stronger in combination with a radical project portfolio. The highest NPD performance was measured for companies focusing mainly on incremental innovation. It is argued that in highly regulated sectors, companies with an incremental product portfolio would benefit from employing a functional structure. Those companies who choose for a more radical project portfolio in highly regulated sectors should be aware\ud
that they are likely to excell only in the longer term by focusing on strategic flexibility. In their NPD organization, they might be well advised to combine informal innovation processes with an innovative climate
Angiotensin-(1-7) and angiotensin-(1-9): function in cardiac and vascular remodeling
The renin angiotensin system (RAS) is integral to cardiovascular physiology, however, dysregulation of this system largely contributes to the pathophysiology of cardiovascular disease (CVD). It is well established that angiotensin II (Ang II), the main effector of the RAS, engages the angiotensin type 1 receptor and promotes cell growth, proliferation, migration and oxidative stress, all processes which contribute to remodeling of the heart and vasculature, ultimately leading to the development and progression of various CVDs including heart failure and atherosclerosis. The counter-regulatory axis of the RAS, which is centered on the actions of angiotensin converting enzyme 2 (ACE2) and the resultant production of angiotensin-(1-7) (Ang-(1-7) from Ang II, antagonizes the actions of Ang II via the receptor Mas, thereby providing a protective role in CVD. More recently, another ACE2 metabolite, Ang-(1-9), has been reported to be a biologically active peptide within the counter-regulatory axis of the RAS. This review will discuss the role of the counter-regulatory RAS peptides, Ang-(1-7) and Ang-(1-9) in the cardiovascular system, with a focus on their effects in remodeling of the heart and vasculature
Value of minimum intensity projections for chest CT in COVID-19 patients
Purpose: To investigate whether minimum intensity projection (MinIP) reconstructions enable more accurate depiction of pulmonary ground-glass opacity (GGO) compared to standard transverse sections and multiplanar reformat (MPR) series in patients with suspected coronavirus disease 2019 (COVID-19). Method: In this multinational study, chest CT scans of 185 patients were retrospectively analyzed. Diagnostic accuracy, diagnostic confidence, image quality regarding the assessment of GGO, as well as subjective time-efficiency of MinIP and standard MPR series were analyzed based on the assessment of six radiologists. In addition, the suitability for COVID-19 evaluation, image quality regarding GGO and subjective time-efficiency in clinical routine was assessed by five clinicians. Results: The reference standard revealed a total of 149 CT scans with pulmonary GGO. MinIP reconstructions yielded significantly higher sensitivity (99.9 % vs 95.6 %), specificity (95.8 % vs 86.1 %) and accuracy (99.1 % vs 93.8 %) for assessing of GGO compared with standard MPR series. MinIP reconstructions achieved significantly higher ratings by radiologists concerning diagnostic confidence (medians, 5.00 vs 4.00), image quality (medians, 4.00 vs 4.00), contrast between GGO and unaffected lung parenchyma (medians, 5.00 vs 4.00) as well as subjective time-efficiency (medians, 5.00 vs 4.00) compared with MPR-series (all P <.001). Clinicians preferred MinIP reconstructions for COVID-19 assessment (medians, 5.00 vs 3.00), image quality regarding GGO (medians, 5.00 vs 3.00) and subjective time-efficiency in clinical routine (medians, 5.00 vs 3.00). Conclusions: MinIP reconstructions improve the assessment of COVID-19 in chest CT compared to standard images and may be suitable for routine application
Biomechanical Assessment of Liver Integrity: Prospective Evaluation of Mechanical Versus Acoustic MR Elastography
BACKGROUND: Magnetic resonance elastography (MRE) can quantify tissue biomechanics noninvasively, including pathological hepatic states like metabolic dysfunction-associated steatohepatitis. PURPOSE: To compare the performance of 2D/3D-MRE using the gravitational (GT) transducer concept with the current commercial acoustic (AC) solution utilizing a 2D-MRE approach. Additionally, quality index markers (QIs) were proposed to identify image pixels with sufficient quality for reliably estimating tissue biomechanics. STUDY TYPE: Prospective. POPULATION: One hundred seventy participants with suspected or confirmed liver disease (median age, 57 years [interquartile range (IQR), 46-65]; 66 females), and 11 healthy volunteers (median age, 31 years [IQR, 27-34]; 5 females). FIELD STRENGTH/SEQUENCE: Participants were scanned twice at 1.5 T and 60 Hz vibration frequency: first, using AC-MRE (2D-MRE, spin-echo EPI sequence, 11 seconds breath-hold), and second, using GT-MRE (2D- and 3D-MRE, gradient-echo sequence, 14 seconds breath-hold). ASSESSMENT: Image analysis was performed by four independent radiologists and one biomedical engineer. Additionally, superimposed analytic plane shear waves of known wavelength and attenuation at fixed shear modulus were used to propose pertinent QIs. STATISTICAL TESTS: Spearman's correlation coefficient (r) was applied to assess the correlation between modalities. Interreader reproducibility was evaluated using Bland-Altman bias and reproducibility coefficients. P-values <0.05 were considered statistically significant. RESULTS: Liver stiffness quantified via GT-2D/3D correlated well with AC-2D (r ≥ 0.89 [95% CI: 0.85-0.92]) and histopathological grading (r ≥ 0.84 [95% CI: 0.72-0.91]), demonstrating excellent agreement in Bland-Altman plots and between readers (κ ≥ 0.86 [95% CI: 0.81-0.91]). However, GT-2D showed a bias in overestimating stiffness compared to GT-3D. Proposed QIs enabled the identification of pixels deviating beyond 10% from true stiffness based on a combination of total wave amplitude, temporal sinusoidal nonlinearity, and wave signal-to-noise ratio for GT-3D. CONCLUSION: GT-MRE represents an alternative to AC-MRE for noninvasive liver tissue characterization. Both GT-2D and 3D approaches correlated strongly with the established commercial approach, offering advanced capabilities in abdominal imaging compared to AC-MRE. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2
- …