73 research outputs found
Modeling complex flow structures and drag around a submerged plant of varied posture
Although vegetation is present in many rivers, the bulk of past work concerned with modeling the influence of vegetation on flow has considered vegetation to be morphologically simple and has generally neglected the complexity of natural plants. Here we report on a combined flume and numerical model experiment which incorporates time-averaged plant posture, collected through terrestrial laser scanning, into a computational fluid dynamics model to predict flow around a submerged riparian plant. For three depth-limited flow conditions (Reynolds number = 65,000–110,000), plant dynamics were recorded through high-definition video imagery, and the numerical model was validated against flow velocities collected with an acoustic Doppler velocimeter. The plant morphology shows an 18% reduction in plant height and a 14% increase in plant length, compressing and reducing the volumetric canopy morphology as the Reynolds number increases. Plant shear layer turbulence is dominated by Kelvin-Helmholtz type vortices generated through shear instability, the frequency of which is estimated to be between 0.20 and 0.30 Hz, increasing with Reynolds number. These results demonstrate the significant effect that the complex morphology of natural plants has on in-stream drag, and allow a physically determined, species-dependent drag coefficient to be calculated. Given the importance of vegetation in river corridor management, the approach developed here demonstrates the necessity to account for plant motion when calculating vegetative resistance
‘InfraRivChange’: A Web Application to Monitor River Migration at Sites of Critical Bridge Infrastructure in the Philippines
No abstract available
Commensurate lattice distortion in the layered titanium oxypnictides NaTiO ( As, Sb) determined by X-ray diffraction
We report single crystal X-ray diffraction measurements on
NaTiO ( = As, Sb) which reveal a charge superstructure that
appears below the density wave transitions previously observed in bulk data.
From symmetry-constrained structure refinements we establish that the
associated distortion mode can be described by two propagation vectors, and , with (Sb) or (As), and primarily involves in-plane displacements of the Ti atoms
perpendicular to the Ti--O bonds. The results provide direct evidence for
phonon-assisted charge density wave order in NaTiO and identify
a proximate ordered phase that could compete with superconductivity in doped
BaTiSbO
Applications of Google Earth Engine in fluvial geomorphology for detecting river channel change
Cloud‐based computing, access to big geospatial data, and virtualization, whereby users are freed from computational hardware and data management logistics, could revolutionize remote sensing applications in fluvial geomorphology. Analysis of multitemporal, multispectral satellite imagery has provided fundamental geomorphic insight into the planimetric form and dynamics of large river systems, but information derived from these applications has largely been used to test existing concepts in fluvial geomorphology, rather than for generating new concepts or theories. Traditional approaches (i.e., desktop computing) have restricted the spatial scales and temporal resolutions of planimetric river channel change analyses. Google Earth Engine (GEE), a cloud‐based computing platform for planetary‐scale geospatial analyses, offers the opportunity to relieve these spatiotemporal restrictions. We summarize the big geospatial data flows available to fluvial geomorphologists within the GEE data catalog, focus on approaches to look beyond mapping wet channel extents and instead map the wider riverscape (i.e., water, sediment, vegetation) and its dynamics, and explore the unprecedented spatiotemporal scales over which GEE analyses can be applied. We share a demonstration workflow to extract active river channel masks from a section of the Cagayan River (Luzon, Philippines) then quantify centerline migration rates from multitemporal data. By enabling fluvial geomorphologists to take their algorithms to petabytes worth of data, GEE is transformative in enabling deterministic science at scales defined by the user and determined by the phenomena of interest. Equally as important, GEE offers a mechanism for promoting a cultural shift toward open science, through the democratization of access and sharing of reproducible code
Our Sun. IV. The Standard Model and Helioseismology: Consequences of Uncertainties in Input Physics and in Observed Solar Parameters
Helioseismology provides a powerful tool to explore the deep interior of the
Sun: for example, the adiabatic sound speed can be inferred with an accuracy of
a few parts in 10,000. This has become a serious challenge to theoretical
models of the Sun. Therefore, we have undertaken a self-consistent, systematic
study of sources of uncertainties in the standard solar model, which must be
understood before the helioseismic observations can be used as constraints on
theory. We find that the largest uncertainty in the sound speed in the solar
interior, namely, 3 parts in 1000, arises from uncertainties in the observed
photospheric abundances of the elements; uncertainties of 1 part in 1000 arise
from (1) the 4% uncertainty in the OPAL opacities, (2) the 5% uncertainty in
the basic pp nuclear reaction rate, (3) the 15% uncertainty in the diffusion
constants for the gravitational settling of helium, and (4) the 50%
uncertainties in diffusion constants for the heavier elements. (Other
investigators have shown that similar uncertainties arise from uncertainties in
the interior equation of state and in rotation-induced turbulent mixing.) The
predicted pre-main-sequence solar lithium depletion is a factor of order 20 (an
order of magnitude larger than that predicted by earlier models that neglected
gravitational settling and used older opacities), and is uncertain by a factor
of 2. The predicted neutrino capture rate is uncertain by 30% for the Cl-37
experiment and by 3% for the Ga-71 experiments (not including uncertainties in
the capture cross sections), while the B-8 neutrino flux is uncertain by 30%.Comment: LaTeX, 38 pages (including 8 figures); ApJ, in press. Added
figures/color figurea available at
http://www.cita.utoronto.ca/~boothroy/sun4.htm
Observations and computational multi-phase modelling in tropical river settings show complex channel changes downstream from rainfall-triggered landslides
Alluvial river channels respond to changes in sediment supply by adjusting their geometry. Landslide sediment delivery and geomorphic response of river channels during floods are poorly understood and rarely examined in tropical settings. We investigate the impact of landslides on channel geomorphic changes during an extreme typhoon-induced flood event in the Philippines, specifically the complex geomorphic response of the Antamok River to Typhoon Mangkhut in September 2018, which triggered >500 landslides in the Ambalanga catchment. The catchment has a legacy of anthropogenic modifications, such as extensive small-scale (artisanal) mining and tailings storage facilities (TSFs) from large-scale mining activities.
We use a novel mix of mapping and computational modelling approaches to test the hypothesis that landslide sediment delivery is a major control on channel geomorphic change. Pre- and post-event imagery show that the overall active channel area increased by 35.9% and the mean active channel width increased by 9.1 m. Spatially, we find no clear relationship between landslide sediment input or unit stream power and channel width geomorphic change, with longitudinal changes in active channel width complicated by TSFs. Multi-phase modelling using r.avaflow revealed how landslide sediment delivery and TSFs interacted with the flow to generate the observed patterns of channel change. The model simulated channel incision in the upper parts of the catchment (up to 0.78 m) and deposition in the TSFs (up to 1.73 m).
Our findings demonstrate that well-established methods (e.g., stream power threshold) fail to fully explain channel width geomorphic changes, particularly for anthropogenically altered catchments. Integrating techniques, such as landslide mapping and multi-phase computational modelling improves understanding of sediment supply's role in channel width change during extreme events. Numerical simulations also demonstrate that conventional assumptions of increased erosion and deposition with rising flow discharge are inaccurate with large sediment input, highlighting instead the effectiveness of multi-phase models
Geometric reconstruction methods for electron tomography
Electron tomography is becoming an increasingly important tool in materials
science for studying the three-dimensional morphologies and chemical
compositions of nanostructures. The image quality obtained by many current
algorithms is seriously affected by the problems of missing wedge artefacts and
nonlinear projection intensities due to diffraction effects. The former refers
to the fact that data cannot be acquired over the full tilt range;
the latter implies that for some orientations, crystalline structures can show
strong contrast changes. To overcome these problems we introduce and discuss
several algorithms from the mathematical fields of geometric and discrete
tomography. The algorithms incorporate geometric prior knowledge (mainly
convexity and homogeneity), which also in principle considerably reduces the
number of tilt angles required. Results are discussed for the reconstruction of
an InAs nanowire
Population Synthesis of Binary Carbon-enhanced Metal-poor Stars
The carbon-enhanced metal-poor (CEMP) stars constitute approximately one
fifth of the metal-poor ([Fe/H] ~< -2) population but their origin is not well
understood. The most widely accepted formation scenario, invokes mass-transfer
of carbon-rich material from a thermally-pulsing asymptotic giant branch
(TPAGB) primary star to a less massive main-sequence companion which is seen
today. Recent studies explore the possibility that an initial mass function
biased toward intermediate-mass stars is required to reproduce the observed
CEMP fraction in stars with metallicity [Fe/H] < -2.5. These models also
implicitly predict a large number of nitrogen-enhanced metal-poor (NEMP) stars
which is not seen. We investigate whether the observed CEMP and NEMP to
extremely metal-poor (EMP) ratios can be explained without invoking a change in
the initial mass function.
We confirm earlier findings that with current detailed TPAGB models the large
observed CEMP fraction cannot be accounted for. We find that efficient third
dredge up in low-mass (less than 1.25Msun), low-metallicity stars may offer at
least a partial explanation to the large observed CEMP fraction while remaining
consistent with the small observed NEMP fraction.Comment: 20 pages, 23 figures, accepted for publication in A&
River Styles and stream power analysis reveal the diversity of fluvial morphology in a Philippine tropical catchment
Characterisation of hydromorphological attributes is crucial for effective river management. Such information is often overlooked in tropical regions such as the Philippines where river management strategies mainly focus on issues around water quality and quantity. We address this knowledge gap using the River Styles Framework as a template to identify the diversity of river morphodynamics. We identify eight distinct River Styles (river types) in the Bislak catchment (586 km2) in the Philippines, showing considerable geomorphic diversity within a relatively small catchment area. Three River Styles in a Confined valley setting occupy 57% of the catchment area, another three in a partly confined valley setting occupy 37%, and two in the remaining 6% are found in a laterally unconfined valley setting. Five characteristic downstream patterns of River Styles were identified across the catchment. We observe that variation in channel slope for a given catchment area (i.e., total stream power) is insufficient to differentiate between river types. Hence, topographic analyses should be complemented with broader framed, catchment-specific approaches to river characterisation. The outputs and understandings from the geomorphic analysis of rivers undertaken in this study can support river management applications by explicitly incorporating understandings of river diversity and dynamics. This has the potential to reshape how river management is undertaken, to shift from reactive, engineering-based approaches that dominate in the Philippines, to more sustainable, ecosystem-based approaches to management
Flood estimation for ungauged catchments in the Philippines
Abstract. Flood magnitude and frequency estimation are essential for the design of structural and nature-based flood risk management interventions and water resources planning. However, the global geography of hydrological observations is uneven; in many regions, such as the Philippines, data are spatially and/or temporary sparse, limiting the choice of statistical methods for flood estimation. We evaluate the potential of pooling short historical data series for ungauged catchment flood estimation. Daily mean river discharge data were collected from 842 sites, with data spanning from 1908 to 2018. Of these, 513 candidate sites met criteria to estimate a reliable annual maximum flood. Using the index flood approach, a range of controls were assessed at national and regional scales using land cover and rainfall datasets, and GIS-derived catchment characteristics. Multivariate analysis for predictive equations for 2 to 100 year recurrence interval floods based on catchment area only have R2 ≤ 0.59. Additionally, adding a rainfall variable, the median annual maximum 1-day rainfall, increases R2 to between 0.56 for Q100 and 0.66 for Q2. Very few other variables were significant when added to multiple regression equations. Although the Philippines exhibits regional climate variability, there is limited spatial structure in predictive equation residuals and region-specific predictive equations do not perform significantly better than national equations. Relatively low R2 values are typical of studies from tropical regions. The predictive equations are suitable for use as design equations for the Philippines but uncertainties must be assessed. Our approach demonstrates how combining individually short historical records, after careful screening and exclusion of erroneous data, generates large data sets that can produce consistent results. Extension of continuous flood records is required to reduce uncertainties but national-scale consistency suggests that extrapolation from a small number of carefully selected catchments could provide nationally reliable predictive equations with reduced uncertainties.
</jats:p
- …