31 research outputs found

    Kinky DNA in solution: Small-angle-scattering study of a nucleosome positioning sequence

    Get PDF
    DNA is a flexible molecule, but the degree of its flexibility is subject to debate. The commonly-accepted persistence length of lp ≈ 500Å is inconsistent with recent studies on short-chain DNA that show much greater flexibility but do not probe its origin. We have performed x-ray and neutron small-angle scattering on a short DNA sequence containing a strong nucleosome positioning element and analyzed the results using a modified Kratky-Porod model to determine possible conformations. Our results support a hypothesis from Crick and Klug in 1975 that some DNA sequences in solution can have sharp kinks, potentially resolving the discrepancy. Our conclusions are supported by measurements on a radiation-damaged sample, where single-strand breaks lead to increased flexibility and by an analysis of data from another sequence, which does not have kinks, but where our method can detect a locally enhanced flexibility due to an AT domain.Spanish Ministry of Economy, Industry and Competitiveness (BES-2013-065453, EEBB-I-2015-09973, FIS2012-38827). S.C.L. and UC-154 are grateful for the support of Junta de Castilla y Leon (Spain) Nanofibersafe BU079U16. D.A. acknowledges funding from the Agence Nationale de la Recherche through ANR-12-BSV5-0017-01 “Chrome” and ANR-17-CE11-0019-03 “Chrom3D” grants. N.T. acknowledges support by the project Advanced Materials and Devices (MIS 5002409, Competitiveness, Entrepreneurship and Innovation, NSRF 2014-2020) cofinanced by Greece and the European Regional Development Fund

    Generation of remosomes by the SWI/SNF chromatin remodeler family

    Get PDF
    International audienceChromatin remodelers are complexes able to both alter histone-DNA interactions and to mobilize nucleosomes. The mechanism of their action and the conformation of remodeled nucleosomes remain a matter of debates. In this work we compared the type and structure of the products of nucleosome remodeling by SWI/SNF and ACF complexes using high-resolution microscopy combined with novel biochemical approaches. We find that SWI/SNF generates a multitude of nucleosome-like metastable particles termed "remosomes". Restriction enzyme accessibility assay, DNase I footprinting and AFM experiments reveal perturbed histone-DNA interactions within these particles. Electron cryo-microscopy shows that remosomes adopt a variety of different structures with variable irregular DNA path, similar to those described upon RSC remodeling. Remosome DNA accessibility to restriction enzymes is also markedly increased. We suggest that the generation of remosomes is a common feature of the SWI/SNF family remodelers. In contrast, the ACF remodeler, belonging to ISWI family, only produces repositioned nucleosomes and no evidence for particles associated with extra DNA, or perturbed DNA paths was found. The remosome generation by the SWI/SNF type of remodelers may represent a novel mechanism involved in processes where nucleosomal DNA accessibility is required, such as DNA repair or transcription regulation

    High-resolution structure of the nucleosome-H1 complex and interaction with transcription factor Sox6

    No full text
    Comprendre la structure et l’organisation de la chromatine est une question fondamentale dans le domaine de la rĂ©gulation de l’expression des gĂšnes. La cristallographie par rayons-X et d’autres techniques biophysiques on permit de comprendre la structure du nuclĂ©osome avec une prĂ©cision quasi atomique. MalgrĂ© de nombreuses Ă©tudes, les donnĂ©es structurelles au delĂ  de la particule de cƓur nuclĂ©osomale (NCP) demeurent imprĂ©cises. Au cours des derniĂšres dĂ©cennies plusieurs tentatives ont Ă©tĂ© faites pour montrer comment l’histone de liaison H1 interagit avec les particules nuclĂ©osomales pour les condenser en fibre de chromatine. Ces Ă©tudes ont menĂ© Ă  diffĂ©rents modĂšle dĂ©crivant la position de l’histone de liaison H1 sur la chromatine. De rĂ©centes avancĂ©es sur l’histone de liaison H1 suggĂšrent que le domaine globulaire de H1 (GH1) et la partie C-terminale interagit avec la dyade du nuclĂ©osome et les 2 bouts d’ADN de liaison (modĂšle Ă  3 contacts) qui sont contraintes de former une structure en tige. Cependant, la conformation et la position prĂ©cise de l’histone de liaison H1 reste inconnues et la controverse Ă  ce sujet persiste.Dans cette Ă©tude, nous avons dĂ©terminĂ© la structure tridimensionnelle de nuclĂ©osomes contenant H1 par des techniques de cryo-microscopie Ă©lectronique (cryo-EM) et de diffraction aux rayons-X dans des cristaux. Nous avons utilisĂ© le chaperons d’histone, NAP1, pour dĂ©poser l’histone de liaison H1 sur les nuclĂ©osomes reconstituĂ© Ă  partir des histones de cƓur recombinant et la sĂ©quence d’ADN positionnante 601 de 197 paires de bases (dite de Widom). Nos rĂ©sultats de cryo-EM montrent que l’association de H1 compacte le nuclĂ©osome en rĂ©duisant la mobilitĂ© des ADNs et stabilisant ainsi les contacts entre les nuclĂ©otides prĂ©cĂ©dant la sortie NCP et l’octamer d’histones. Nos rĂ©sultats par diffusion de rayon-x dans des cristaux Ă  une rĂ©solution de 7Ä montrent que la partie globulaire de H1 (GH1) est situĂ©e sur la dyade et interagie simultanĂ©ment avec les petits sillons de l’ADN Ă  la dyade et les ADN de liaison Ă  l’entrĂ©e et Ă  la sortie du nuclĂ©osome. Les parties N- et C-terminales de H1 sont orientĂ©es vers l’extĂ©rieur du cƓur du nuclĂ©osome Ă  travers les diffĂ©rents ADN de liaison. Nous avons validĂ© l’orientation de GH1 par des expĂ©riences de pontages ADN-proteine, aprĂšs substitutions de cystĂ©ine par mutagĂ©nĂšse dirigĂ©e, empreinte par radicaux hydroxyles et « amarrage molĂ©culaire ». Nos rĂ©sultats rĂ©vĂšlent l’effet de H1 sur la dynamique du nuclĂ©osome et apporte une vision dĂ©taillĂ© de la conformation du « stem du nuclĂ©osome » lors de l’incorporation de H1.Nous avons Ă©galement Ă©tudiĂ© l’association spĂ©cifique du facteur de transcription Sox6 Ă  ces de reconnaissance consensus prĂ©sent Ă  l’intĂ©rieur du nuclĂ©osome, associĂ© ou non avec l’histone de liaison H1 par une empreinte biphotonique avec laser UV. Nos rĂ©sultats montrent que le domaine HMG de Sox6 se fixe spĂ©cifiquement sur son motif consensus situĂ© profondĂ©ment Ă  l’intĂ©rieur du nuclĂ©osome Ă  l’exception sur la dyade. Cette association n’est pas influencĂ©e par la « fermeture » des ADN de liaison avec l’histone H1 dĂ©montrant l’existence d’un autre façon de reconnaissance que le modĂšle de Widom basĂ©s sur fluctuations thermodynamiques des ADN de liaison. Le rĂ©sultat que Sox6 est capable de surmonter la barriĂšre nuclĂ©osomale (avec ou sans H1) suggĂšre fortement que les facteurs de transcription de la famille Sox, de domaine de liaison de type HMG, jouent le rĂŽle de facteurs « pionnier » dans la rĂ©gulation de la transcription et en particulier dans l’initiation de la diffĂ©rentiation.Understanding the structural organization of chromatin is a fundamental issue in the field of gene regulation. X-ray crystallography and other biophysical techniques have enabled understanding of the nucleosome structure nearly at atomic precision. Despite numerous studies, the structural information beyond the nucleosome core particle (NCP) remains elusive. Over the last few decades several attempts have been made to reveal how the linker histone H1 interacts with the nucleosome particles and condenses them into a chromatin fiber. These studies have led to different models describing the position of linker histone H1 on chromatin. Recent advancements in linker histone H1 studies suggest that globular domain of histone H1 (GH1) interacts with the nucleosomal dyad and its C-terminal domain interacts with the linker DNA forming a stem like structure. However, the precise conformation of linker histone H1 and position of other domains still remains unknown.In this study, we resolved the three-dimensional structure of H1-containing nucleosomes by using cryo-electron microscopy (cryo-EM) and X-ray crystallography. We have used the chaperone NAP-1 to deposit linker histone H1 onto nucleosomes reconstituted from recombinant core histones and 197 base-pair of 601 strong nucleosome positioning DNA sequence. Our cryo-EM results showed that association of H1 gives a more compact appearance of the nucleosome as it restricts the mobility of the two linker DNAs keeping them in close proximity and thereby stabilizing contacts between the histone core and nucleotides preceding NCP exit. Our X-ray crystallography results at 7 Ä resolution reveal that the globular domain of histone H1 (GH1) is positioned onto the nucleosome pseudodyad and recognizes the nucleosome core and both linker arms by contacting the DNA backbone in the minor groove. The N- and C-terminal domains of H1 are oriented away from the nucleosome core towards different DNA linkers. We further validated the orientation of GH1 by cross-linking experiments followed after cysteine substitutions mutagenesis, hydroxyl radical footprinting and by molecular docking. Our results reveal the effect of H1 on nucleosome dynamics and also provide a detailed view of the nucleosome stem conformation upon H1 incorporation.We also studyed the nucleosome accessibility of transcription factor Sox6 and the impact of linker histone H1 incorporation to Sox6 binding on nucleosome by using UV laser biphotonic footprinting. Our results reveal that Sox6 HMG domain binds specifically to its consensus binding located deep inside of the nucleosomal DNA, but not at the nucleosomal dyad. Our in vitro footprinting results reveal that the “locking” of DNA linkers by incorporation of histone H1 on nucleosome does not show any impact on Sox6 HMG domain binding, evidencing an alternative to the Widom model based on thermal fluctuation “opening” of the nucleosome at the linkers.. The finding that Sox6 is able to overcome nucleosome (chromatosome) barrier in presence or absence of H1, strongly suggest that the HMG domain - based Sox family proteins it can act as a pioneer factor in transcription regulation, in particular in initiation of cell differentiation

    Structure de haute résolution du complexe nucleosome-H1 et son interaction avec le facteur de transcription Sox6

    No full text
    Understanding the structural organization of chromatin is a fundamental issue in the field of gene regulation. X-ray crystallography and other biophysical techniques have enabled understanding of the nucleosome structure nearly at atomic precision. Despite numerous studies, the structural information beyond the nucleosome core particle (NCP) remains elusive. Over the last few decades several attempts have been made to reveal how the linker histone H1 interacts with the nucleosome particles and condenses them into a chromatin fiber. These studies have led to different models describing the position of linker histone H1 on chromatin. Recent advancements in linker histone H1 studies suggest that globular domain of histone H1 (GH1) interacts with the nucleosomal dyad and its C-terminal domain interacts with the linker DNA forming a stem like structure. However, the precise conformation of linker histone H1 and position of other domains still remains unknown.In this study, we resolved the three-dimensional structure of H1-containing nucleosomes by using cryo-electron microscopy (cryo-EM) and X-ray crystallography. We have used the chaperone NAP-1 to deposit linker histone H1 onto nucleosomes reconstituted from recombinant core histones and 197 base-pair of 601 strong nucleosome positioning DNA sequence. Our cryo-EM results showed that association of H1 gives a more compact appearance of the nucleosome as it restricts the mobility of the two linker DNAs keeping them in close proximity and thereby stabilizing contacts between the histone core and nucleotides preceding NCP exit. Our X-ray crystallography results at 7 Ä resolution reveal that the globular domain of histone H1 (GH1) is positioned onto the nucleosome pseudodyad and recognizes the nucleosome core and both linker arms by contacting the DNA backbone in the minor groove. The N- and C-terminal domains of H1 are oriented away from the nucleosome core towards different DNA linkers. We further validated the orientation of GH1 by cross-linking experiments followed after cysteine substitutions mutagenesis, hydroxyl radical footprinting and by molecular docking. Our results reveal the effect of H1 on nucleosome dynamics and also provide a detailed view of the nucleosome stem conformation upon H1 incorporation.We also studyed the nucleosome accessibility of transcription factor Sox6 and the impact of linker histone H1 incorporation to Sox6 binding on nucleosome by using UV laser biphotonic footprinting. Our results reveal that Sox6 HMG domain binds specifically to its consensus binding located deep inside of the nucleosomal DNA, but not at the nucleosomal dyad. Our in vitro footprinting results reveal that the “locking” of DNA linkers by incorporation of histone H1 on nucleosome does not show any impact on Sox6 HMG domain binding, evidencing an alternative to the Widom model based on thermal fluctuation “opening” of the nucleosome at the linkers.. The finding that Sox6 is able to overcome nucleosome (chromatosome) barrier in presence or absence of H1, strongly suggest that the HMG domain - based Sox family proteins it can act as a pioneer factor in transcription regulation, in particular in initiation of cell differentiation.Comprendre la structure et l’organisation de la chromatine est une question fondamentale dans le domaine de la rĂ©gulation de l’expression des gĂšnes. La cristallographie par rayons-X et d’autres techniques biophysiques on permit de comprendre la structure du nuclĂ©osome avec une prĂ©cision quasi atomique. MalgrĂ© de nombreuses Ă©tudes, les donnĂ©es structurelles au delĂ  de la particule de cƓur nuclĂ©osomale (NCP) demeurent imprĂ©cises. Au cours des derniĂšres dĂ©cennies plusieurs tentatives ont Ă©tĂ© faites pour montrer comment l’histone de liaison H1 interagit avec les particules nuclĂ©osomales pour les condenser en fibre de chromatine. Ces Ă©tudes ont menĂ© Ă  diffĂ©rents modĂšle dĂ©crivant la position de l’histone de liaison H1 sur la chromatine. De rĂ©centes avancĂ©es sur l’histone de liaison H1 suggĂšrent que le domaine globulaire de H1 (GH1) et la partie C-terminale interagit avec la dyade du nuclĂ©osome et les 2 bouts d’ADN de liaison (modĂšle Ă  3 contacts) qui sont contraintes de former une structure en tige. Cependant, la conformation et la position prĂ©cise de l’histone de liaison H1 reste inconnues et la controverse Ă  ce sujet persiste.Dans cette Ă©tude, nous avons dĂ©terminĂ© la structure tridimensionnelle de nuclĂ©osomes contenant H1 par des techniques de cryo-microscopie Ă©lectronique (cryo-EM) et de diffraction aux rayons-X dans des cristaux. Nous avons utilisĂ© le chaperons d’histone, NAP1, pour dĂ©poser l’histone de liaison H1 sur les nuclĂ©osomes reconstituĂ© Ă  partir des histones de cƓur recombinant et la sĂ©quence d’ADN positionnante 601 de 197 paires de bases (dite de Widom). Nos rĂ©sultats de cryo-EM montrent que l’association de H1 compacte le nuclĂ©osome en rĂ©duisant la mobilitĂ© des ADNs et stabilisant ainsi les contacts entre les nuclĂ©otides prĂ©cĂ©dant la sortie NCP et l’octamer d’histones. Nos rĂ©sultats par diffusion de rayon-x dans des cristaux Ă  une rĂ©solution de 7Ä montrent que la partie globulaire de H1 (GH1) est situĂ©e sur la dyade et interagie simultanĂ©ment avec les petits sillons de l’ADN Ă  la dyade et les ADN de liaison Ă  l’entrĂ©e et Ă  la sortie du nuclĂ©osome. Les parties N- et C-terminales de H1 sont orientĂ©es vers l’extĂ©rieur du cƓur du nuclĂ©osome Ă  travers les diffĂ©rents ADN de liaison. Nous avons validĂ© l’orientation de GH1 par des expĂ©riences de pontages ADN-proteine, aprĂšs substitutions de cystĂ©ine par mutagĂ©nĂšse dirigĂ©e, empreinte par radicaux hydroxyles et « amarrage molĂ©culaire ». Nos rĂ©sultats rĂ©vĂšlent l’effet de H1 sur la dynamique du nuclĂ©osome et apporte une vision dĂ©taillĂ© de la conformation du « stem du nuclĂ©osome » lors de l’incorporation de H1.Nous avons Ă©galement Ă©tudiĂ© l’association spĂ©cifique du facteur de transcription Sox6 Ă  ces de reconnaissance consensus prĂ©sent Ă  l’intĂ©rieur du nuclĂ©osome, associĂ© ou non avec l’histone de liaison H1 par une empreinte biphotonique avec laser UV. Nos rĂ©sultats montrent que le domaine HMG de Sox6 se fixe spĂ©cifiquement sur son motif consensus situĂ© profondĂ©ment Ă  l’intĂ©rieur du nuclĂ©osome Ă  l’exception sur la dyade. Cette association n’est pas influencĂ©e par la « fermeture » des ADN de liaison avec l’histone H1 dĂ©montrant l’existence d’un autre façon de reconnaissance que le modĂšle de Widom basĂ©s sur fluctuations thermodynamiques des ADN de liaison. Le rĂ©sultat que Sox6 est capable de surmonter la barriĂšre nuclĂ©osomale (avec ou sans H1) suggĂšre fortement que les facteurs de transcription de la famille Sox, de domaine de liaison de type HMG, jouent le rĂŽle de facteurs « pionnier » dans la rĂ©gulation de la transcription et en particulier dans l’initiation de la diffĂ©rentiation

    Structure de haute résolution du complexe nucleosome-H1 et son interaction avec le facteur de transcription Sox6

    No full text
    Understanding the structural organization of chromatin is a fundamental issue in the field of gene regulation. X-ray crystallography and other biophysical techniques have enabled understanding of the nucleosome structure nearly at atomic precision. Despite numerous studies, the structural information beyond the nucleosome core particle (NCP) remains elusive. Over the last few decades several attempts have been made to reveal how the linker histone H1 interacts with the nucleosome particles and condenses them into a chromatin fiber. These studies have led to different models describing the position of linker histone H1 on chromatin. Recent advancements in linker histone H1 studies suggest that globular domain of histone H1 (GH1) interacts with the nucleosomal dyad and its C-terminal domain interacts with the linker DNA forming a stem like structure. However, the precise conformation of linker histone H1 and position of other domains still remains unknown.In this study, we resolved the three-dimensional structure of H1-containing nucleosomes by using cryo-electron microscopy (cryo-EM) and X-ray crystallography. We have used the chaperone NAP-1 to deposit linker histone H1 onto nucleosomes reconstituted from recombinant core histones and 197 base-pair of 601 strong nucleosome positioning DNA sequence. Our cryo-EM results showed that association of H1 gives a more compact appearance of the nucleosome as it restricts the mobility of the two linker DNAs keeping them in close proximity and thereby stabilizing contacts between the histone core and nucleotides preceding NCP exit. Our X-ray crystallography results at 7 Ä resolution reveal that the globular domain of histone H1 (GH1) is positioned onto the nucleosome pseudodyad and recognizes the nucleosome core and both linker arms by contacting the DNA backbone in the minor groove. The N- and C-terminal domains of H1 are oriented away from the nucleosome core towards different DNA linkers. We further validated the orientation of GH1 by cross-linking experiments followed after cysteine substitutions mutagenesis, hydroxyl radical footprinting and by molecular docking. Our results reveal the effect of H1 on nucleosome dynamics and also provide a detailed view of the nucleosome stem conformation upon H1 incorporation.We also studyed the nucleosome accessibility of transcription factor Sox6 and the impact of linker histone H1 incorporation to Sox6 binding on nucleosome by using UV laser biphotonic footprinting. Our results reveal that Sox6 HMG domain binds specifically to its consensus binding located deep inside of the nucleosomal DNA, but not at the nucleosomal dyad. Our in vitro footprinting results reveal that the “locking” of DNA linkers by incorporation of histone H1 on nucleosome does not show any impact on Sox6 HMG domain binding, evidencing an alternative to the Widom model based on thermal fluctuation “opening” of the nucleosome at the linkers.. The finding that Sox6 is able to overcome nucleosome (chromatosome) barrier in presence or absence of H1, strongly suggest that the HMG domain - based Sox family proteins it can act as a pioneer factor in transcription regulation, in particular in initiation of cell differentiation.Comprendre la structure et l’organisation de la chromatine est une question fondamentale dans le domaine de la rĂ©gulation de l’expression des gĂšnes. La cristallographie par rayons-X et d’autres techniques biophysiques on permit de comprendre la structure du nuclĂ©osome avec une prĂ©cision quasi atomique. MalgrĂ© de nombreuses Ă©tudes, les donnĂ©es structurelles au delĂ  de la particule de cƓur nuclĂ©osomale (NCP) demeurent imprĂ©cises. Au cours des derniĂšres dĂ©cennies plusieurs tentatives ont Ă©tĂ© faites pour montrer comment l’histone de liaison H1 interagit avec les particules nuclĂ©osomales pour les condenser en fibre de chromatine. Ces Ă©tudes ont menĂ© Ă  diffĂ©rents modĂšle dĂ©crivant la position de l’histone de liaison H1 sur la chromatine. De rĂ©centes avancĂ©es sur l’histone de liaison H1 suggĂšrent que le domaine globulaire de H1 (GH1) et la partie C-terminale interagit avec la dyade du nuclĂ©osome et les 2 bouts d’ADN de liaison (modĂšle Ă  3 contacts) qui sont contraintes de former une structure en tige. Cependant, la conformation et la position prĂ©cise de l’histone de liaison H1 reste inconnues et la controverse Ă  ce sujet persiste.Dans cette Ă©tude, nous avons dĂ©terminĂ© la structure tridimensionnelle de nuclĂ©osomes contenant H1 par des techniques de cryo-microscopie Ă©lectronique (cryo-EM) et de diffraction aux rayons-X dans des cristaux. Nous avons utilisĂ© le chaperons d’histone, NAP1, pour dĂ©poser l’histone de liaison H1 sur les nuclĂ©osomes reconstituĂ© Ă  partir des histones de cƓur recombinant et la sĂ©quence d’ADN positionnante 601 de 197 paires de bases (dite de Widom). Nos rĂ©sultats de cryo-EM montrent que l’association de H1 compacte le nuclĂ©osome en rĂ©duisant la mobilitĂ© des ADNs et stabilisant ainsi les contacts entre les nuclĂ©otides prĂ©cĂ©dant la sortie NCP et l’octamer d’histones. Nos rĂ©sultats par diffusion de rayon-x dans des cristaux Ă  une rĂ©solution de 7Ä montrent que la partie globulaire de H1 (GH1) est situĂ©e sur la dyade et interagie simultanĂ©ment avec les petits sillons de l’ADN Ă  la dyade et les ADN de liaison Ă  l’entrĂ©e et Ă  la sortie du nuclĂ©osome. Les parties N- et C-terminales de H1 sont orientĂ©es vers l’extĂ©rieur du cƓur du nuclĂ©osome Ă  travers les diffĂ©rents ADN de liaison. Nous avons validĂ© l’orientation de GH1 par des expĂ©riences de pontages ADN-proteine, aprĂšs substitutions de cystĂ©ine par mutagĂ©nĂšse dirigĂ©e, empreinte par radicaux hydroxyles et « amarrage molĂ©culaire ». Nos rĂ©sultats rĂ©vĂšlent l’effet de H1 sur la dynamique du nuclĂ©osome et apporte une vision dĂ©taillĂ© de la conformation du « stem du nuclĂ©osome » lors de l’incorporation de H1.Nous avons Ă©galement Ă©tudiĂ© l’association spĂ©cifique du facteur de transcription Sox6 Ă  ces de reconnaissance consensus prĂ©sent Ă  l’intĂ©rieur du nuclĂ©osome, associĂ© ou non avec l’histone de liaison H1 par une empreinte biphotonique avec laser UV. Nos rĂ©sultats montrent que le domaine HMG de Sox6 se fixe spĂ©cifiquement sur son motif consensus situĂ© profondĂ©ment Ă  l’intĂ©rieur du nuclĂ©osome Ă  l’exception sur la dyade. Cette association n’est pas influencĂ©e par la « fermeture » des ADN de liaison avec l’histone H1 dĂ©montrant l’existence d’un autre façon de reconnaissance que le modĂšle de Widom basĂ©s sur fluctuations thermodynamiques des ADN de liaison. Le rĂ©sultat que Sox6 est capable de surmonter la barriĂšre nuclĂ©osomale (avec ou sans H1) suggĂšre fortement que les facteurs de transcription de la famille Sox, de domaine de liaison de type HMG, jouent le rĂŽle de facteurs « pionnier » dans la rĂ©gulation de la transcription et en particulier dans l’initiation de la diffĂ©rentiation

    Cryo-electron microscopy of the chromatin fiber

    No full text
    International audienceThe three-dimensional (3D) organization of chromatin plays a crucial role in the regulation of gene expression. Chromatin conformation is strongly affected by the composition, structural features and dynamic properties of the nucleosome, which in turn determine the nature and geometry of interactions that can occur between neighboring nucleosomes. Understanding how chromatin is spatially organized above the nucleosome level is thus essential for understanding how gene regulation is achieved. Towards this end, great effort has been made to understand how an array of nucleosomes folds into a regular chromatin fiber. This review summarizes new insights into the 3D structure of the chromatin fiber that were made possible by recent advances in cryo-electron microscopy

    A single nucleotide polymorphism associated with hepatitis C virus infections located in the distal region of the IL28B promoter influences NF-ÎșB-mediated gene transcription.

    Get PDF
    Persistence of hepatitis C virus (HCV) infection is observed only in a subset of infected individuals and among them only some respond to treatment. Genome-wide association studies (GWAS) carried out around the world identified single nucleotide polymorphisms (SNPs) in the IL28B locus that are strongly associated with both HCV clearance and treatment response. The functional significance of these associations however, is not clear. In this report we show that an SNP rs28416813 in the distal promoter region of IL28B that is in close proximity to a non-consensus NF-ÎșB-binding site affects downstream reporter gene expression. The effect is likely due to differential binding of NF-ÎșB at the non-consensus site. The non-protective allele showed a reduction in luciferase reporter gene expression compared to the protective allele in HEK293T cells under different experimental conditions including treatment with tumor necrosis factor alpha (TNF-α) and 5' triphosphorylated dsRNA. Furthermore, the HCV RNA polymerase was able to induce transcription from the IL28B promoter in a RIG-I-dependent manner. This induction was influenced by the alleles present at rs28416813. We also demonstrate strong linkage disequilibrium between rs28416813 and another important SNP rs12979860 in two ethnic populations. These results suggest possible mechanisms by which SNPs at the IL28B locus influence spontaneous clearance and treatment response in chronic HCV infections

    Capturing Protein-Nucleic Acid Interactions by High-Intensity Laser-Induced Covalent Cross-Linking(dagger)

    No full text
    Interactions of DNA with structural proteins such as histones, regulatory proteins and enzymes play a crucial role in major cellular processes such as transcription, replication and repair. The in vivo mapping and characterization of the binding sites of the involved biomolecules are of primary importance for a better understanding of genomic deployment that is implicated in tissue and developmental stage-specific gene expression regulation. The most powerful and commonly used approach to date is immunoprecipitation of chemically cross-linked chromatin (XChIP) coupled with sequencing analysis (ChIP-seq). While the resolution and the sensitivity of the high-throughput sequencing techniques have been constantly improved, little progress has been achieved in the cross-linking step. Because of its low efficiency, the use of the conventional UVC lamps remains very limited while the formaldehyde method was established as the "gold standard" cross-linking agent. Efficient biphotonic cross-linking of directly interacting nucleic acid-protein complexes by a single short UV laser pulse has been introduced as an innovative technique for overcoming limitations of conventionally used chemical and photochemical approaches. In this survey, the main available methods including the laser approach are critically reviewed for their ability to generate DNA-protein cross-links in vitro model systems and cells

    The non-protective C allele at rs28416813-rev reduces transcription of reporter gene likely by decreasing NF-ÎșB binding at the non-consensus site.

    No full text
    <p>A) A schematic of the ΔNF construct made with the p1.4IL28B construct with G allele at rs28416813-rev. TSS-transcription start site. The grey rectangle represents the non-consensus NF-ÎșB-binding site between +115 to +124. The vertical line next to the grey rectangle denotes the SNP rs28416813-rev. The dashed line denotes the deletion made between +115 and +163 to generate ΔNF construct. The sequences of the other constructs used are shown in the right with the non-cosensus NF-ÎșB site underlined and the SNP rs28416813-rev in italics. B) A representative plot (of at least two independent experiments, error bars show SD of triplicates) of luciferase activities of p1.4IL28B constructs with G or C alleles at rs28416813-rev and with different mutations introduced in to the non-consensus NF-ÎșB site at +115 position to the plasmid with G allele background.</p

    The 12<sup>th</sup> base contacts R41 in p65.

    No full text
    <p>The 12<sup>th</sup> base in the DNA equivalent to the position of rs28416813 in the IL28B promoter contacts R41 of p65 in the co-crystal structures (PDB ID 2O61). The figure generated by UCSF CHIMERA (available on the World Wide Web) shows that arginine 41 (red) of the p65 protein (in cyan, whereas p50 is in yellow) is in close contact (<3 angstroms) distance from the nucleotide at position equivalent (12<sup>th</sup> position) to the SNP rs28416813 (magenta). The DNA strands are colored green and orange. A consensus oligonucleotide is used in the co-crystal structures.</p
    corecore