2,315 research outputs found

    Racial Comparisons in Police Officer Bench Press Strength over 12.5 Years

    Get PDF
    International Journal of Exercise Science 7(2) : 140-151, 2014. Strength, when considering gender and race, provides a basis for training, hiring, and retention for police officers. The purpose of this study is to identify muscular strength differences among racial groups from initial-recruit to in-service tests. Strength variables included bench press, bench press/lean mass and bench press/body mass. Scores were retrieved for the 1990 to 1995 recruit classes and were paired to the 2006 in-service fitness log. Sample included 309 officers: 30 females (13 black, 17 white) and 279 males (41 black, 238 white). Mean age of recruit was 24.6 ± 3.4 years and for in-service was 37.1 ± 3.7 years. Time between tests was 12.5 ± 2.0 years. Bench press strength significantly increased for all gender and racial groups. Black males were significantly stronger in bench press at initial-recruit and at in-service than white males. All racial and gender groups increased in bench press/lean mass, however, the increase in white females was not significant. No differences were found between black and white females in all strength variables at both testing periods. Black males were significantly stronger than white males in bench press/body mass only at the initial-recruit test. White males showed a significant increase in bench press/body mass over time, but they did not reach the strength level of the black males at in-service. Police departments, with a properly designed physical fitness program, can expect to see increases in strength of personnel over the first half of their careers; however, there are gender and racial differences

    Validation of the Aura Microwave Limb Sounder HNOmeasurements

    Get PDF
    We assess the quality of the version 2.2 (v2.2) HNO3 measurements from the Microwave Limb Sounder (MLS) on the Earth Observing System Aura satellite. The MLS HNO3 product has been greatly improved over that in the previous version (v1.5), with smoother profiles, much more realistic behavior at the lowest retrieval levels, and correction of a high bias caused by an error in one of the spectroscopy files used in v1.5 processing. The v2.2 HNO3 data are scientifically useful over the range 215 to 3.2 hPa, with single-profile precision of ∼0.7 ppbv throughout. Vertical resolution is 3–4 km in the upper troposphere and lower stratosphere, degrading to ∼5 km in the middle and upper stratosphere. The impact of various sources of systematic uncertainty has been quantified through a comprehensive set of retrieval simulations. In aggregate, systematic uncertainties are estimated to induce in the v2.2 HNO3 measurements biases that vary with altitude between ±0.5 and ±2 ppbv and multiplicative errors of ±5–15% throughout the stratosphere, rising to ∼±30% at 215 hPa. Consistent with this uncertainty analysis, comparisons with correlative data sets show that relative to HNO3 measurements from ground-based, balloon-borne, and satellite instruments operating in both the infrared and microwave regions of the spectrum, MLS v2.2 HNO3 mixing ratios are uniformly low by 10–30% throughout most of the stratosphere. Comparisons with in situ measurements made from the DC-8 and WB-57 aircraft in the upper troposphere and lowermost stratosphere indicate that the MLS HNO3 values are low in this region as well, but are useful for scientific studies (with appropriate averaging)

    Derivation of tropospheric methane from TCCON CHâ‚„ and HF total column observations

    Get PDF
    The Total Carbon Column Observing Network (TCCON) is a global ground-based network of Fourier transform spectrometers that produce precise measurements of column-averaged dry-air mole fractions of atmospheric methane (CHâ‚„). Temporal variability in the total column of CHâ‚„ due to stratospheric dynamics obscures fluctuations and trends driven by tropospheric transport and local surface fluxes that are critical for understanding CHâ‚„ sources and sinks. We reduce the contribution of stratospheric variability from the total column average by subtracting an estimate of the stratospheric CHâ‚„ derived from simultaneous measurements of hydrogen fluoride (HF). HF provides a proxy for stratospheric CHâ‚„ because it is strongly correlated to CHâ‚„ in the stratosphere, has an accurately known tropospheric abundance (of zero), and is measured at most TCCON stations. The stratospheric partial column of CHâ‚„ is calculated as a function of the zonal and annual trends in the relationship between CHâ‚„ and HF in the stratosphere, which we determine from ACE-FTS satellite data. We also explicitly take into account the CHâ‚„ column averaging kernel to estimate the contribution of stratospheric CHâ‚„ to the total column. The resulting tropospheric CHâ‚„ columns are consistent with in situ aircraft measurements and augment existing observations in the troposphere

    Noncomputability Arising In Dynamical Triangulation Model Of Four-Dimensional Quantum Gravity

    Full text link
    Computations in Dynamical Triangulation Models of Four-Dimensional Quantum Gravity involve weighted averaging over sets of all distinct triangulations of compact four-dimensional manifolds. In order to be able to perform such computations one needs an algorithm which for any given NN and a given compact four-dimensional manifold MM constructs all possible triangulations of MM with ≤N\leq N simplices. Our first result is that such algorithm does not exist. Then we discuss recursion-theoretic limitations of any algorithm designed to perform approximate calculations of sums over all possible triangulations of a compact four-dimensional manifold.Comment: 8 Pages, LaTex, PUPT-132

    The High Arctic in Extreme Winters: Vortex, Temperature, and MLS and ACE-FTS Trace Gas Evolution

    Get PDF
    The first three Canadian Arctic Atmospheric Chemistry Experiment (ACE) Validation Campaigns at Eureka (80° N, 86° W) were during two extremes of Arctic winter variability: Stratospheric sudden warmings (SSWs) in 2004 and 2006 were among the strongest, most prolonged on record; 2005 was a record cold winter. New satellite measurements from ACE-Fourier Transform Spectrometer (ACE-FTS), Sounding of the Atmosphere using Broadband Emission Radiometry, and Aura Microwave Limb Sounder (MLS), with meteorological analyses and Eureka lidar and radiosonde temperatures, are used to detail the meteorology in these winters, to demonstrate its influence on transport and chemistry, and to provide a context for interpretation of campaign observations. During the 2004 and 2006 SSWs, the vortex broke down throughout the stratosphere, reformed quickly in the upper stratosphere, and remained weak in the middle and lower stratosphere. The stratopause reformed at very high altitude, above where it could be accurately represented in the meteorological analyses. The 2004 and 2006 Eureka campaigns were during the recovery from the SSWs, with the redeveloping vortex over Eureka. 2005 was the coldest winter on record in the lower stratosphere, but with an early final warming in mid-March. The vortex was over Eureka at the start of the 2005 campaign, but moved away as it broke up. Disparate temperature profile structure and vortex evolution resulted in much lower (higher) temperatures in the upper (lower) stratosphere in 2004 and 2006 than in 2005. Satellite temperatures agree well with Eureka radiosondes, and with lidar data up to 50–60 km. Consistent with a strong, cold upper stratospheric vortex and enhanced radiative cooling after the SSWs, MLS and ACE-FTS trace gas measurements show strongly enhanced descent in the upper stratospheric vortex during the 2004 and 2006 Eureka campaigns compared to that in 2005

    Validation of ACE and OSIRIS Ozone and NO2 Measurements Using Ground Based Instruments at 80° N

    Get PDF
    The Optical Spectrograph and Infra-Red Imager System (OSIRIS) and the Atmospheric Chemistry Experiment (ACE) have been taking measurements from space since 2001 and 2003, respectively. This paper presents intercomparisons between ozone and NO2 measured by the ACE and OSIRIS satellite instruments and by ground-based instruments at the Polar Environment Atmospheric Research Laboratory (PEARL), which is located at Eureka, Canada (80◦ N, 86◦ W) and is operated by the Canadian Network for the Detection of Atmospheric Change (CANDAC). The ground-based instruments included in this study are four zenith-sky differential optical absorption spectroscopy (DOAS) instruments, one Bruker Fourier transform infrared spectrometer (FTIR) and four Brewer spectrophotometers. Ozone total columns measured by the DOAS instruments were retrieved using new Network for the Detection of Atmospheric Composition Change (NDACC) guidelines and agree to within 3.2 %. The DOAS ozone columns agree with the Brewer spectrophotometers with mean relative differences that are smaller than 1.5 %. This suggests that for these instruments the new NDACC data guidelines were successful in producing a homogenous and accurate ozone dataset at 80◦ N. Satellite 14–52km ozone and 17–40km NO2 partial columns within 500km of PEARL were calculated for ACE-FTS Version 2.2 (v2.2) plus updates, ACE-FTS v3.0, ACE-MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) v1.2 and OSIRIS SaskMART v5.0x ozone and Optimal Estimation v3.0 NO2 data products. The new ACE-FTS v3.0 and the validated ACE-FTS v2.2 partial columns are nearly identical, with mean relative differences of 0.0±0.2% and −0.2±0.1% for v2.2 minus v3.0 ozone and NO2, respectively. Ozone columns were constructed from 14–52km satellite and 0–14km ozonesonde partial columns and compared with the ground-based total column measurements. The satellite-plus-sonde measurements agree with the ground-based ozone total columns with mean relative differences of 0.1–7.3 %. For NO2, partial columns from 17km upward were scaled to noon using a photo-chemical model. Mean relative differences between OSIRIS, ACE-FTS and ground-based NO2 measurements do not exceed 20 %. ACE-MAESTRO measures more NO2 than the other instruments, with mean relative differences of 25–52 %. Seasonal variation in the differences between NO2 partial columns is observed, suggesting that there are systematic errors in the measurements and/or the photochemical model corrections. For ozone spring-time measurements, additional coincidence criteria based on stratospheric temperature and the location of the polar vortex were found to improve agreement between some of the instruments. For ACE-FTS v2.2 minus Bruker FTIR, the 2007–2009 spring-time mean relative difference improved from−5.0±0.4%to−3.1±0.8% with the dynamical selection criteria. This was the largest improvement, likely because both instruments measure direct sunlight and therefore have well-characterized lines-of-sight compared with scattered sunlight measurements. For NO2, the addition of a±1◦ latitude coincidence criterion improved spring-time intercomparison results, likely due to the sharp latitudinal gradient of NO2 during polar sunrise. The differences between satellite and ground-based measurements do not show any obvious trends over the missions, indicating that both the ACE and OSIRIS instruments continue to perform well

    Sampling Local Fungal Diversity in an Undergraduate Laboratory using DNA Barcoding

    Get PDF
    Traditional methods for fungal species identification require diagnostic morphological characters and are often limited by the availability of fresh fruiting bodies and local identification resources. DNA barcoding offers an additional method of species identification and is rapidly developing as a critical tool in fungal taxonomy. As an exercise in an undergraduate biology course, we identified 9 specimens collected from the Hendrix College campus in Conway, Arkansas, USA to the genus or species level using morphology. We report that DNA barcoding targeting the internal transcribed spacer (ITS) region supported several of our taxonomic determinations and we were able to contribute 5 ITS sequences to GenBank that were supported by vouchered collection information. We suggest that small-scale barcoding projects are possible and that they have value for documenting fungal diversity

    Coping with the extremes : comparative osteology of the tepui-associated toad Oreophrynella and its bearing on the evolution of osteological novelties in the genus

    Get PDF
    The only study of the osteology of the toad genus Oreophrynella dates back to 1971 and was based on a single species. Here, we use high-resolution X-ray microcomputed tomography to analyse the osteology of all nine described Oreophrynella species, which are compared with representatives of other bufonid lineages. Oreophrynella is unique among bufonids in having opposable digits. Osteological synapomorphies confirmed for the genus are as follows: presence of parietal fontanelles and exposed frontoparietal fontanelle, absence of quadratojugal, five presacral vertebrae, distally enlarged terminal phalanges and urostyle greatly expanded into flanges. Ancestral character reconstruction indicates that arboreal habits in some Oreophrynella species are likely to have evolved after the evolution of opposable digits. Opposable digits, in combination with an extension of the interdigital integument and the relative length/orientation of the digits, are likely to be adaptations to facilitate life on rocky tepui summits and an exaptation to arboreality. Cranial simplification in Oreophrynella, in the form of cranial fontanelles and absence of the quadratojugal, is possibly driven by a reduction of developmental costs, increase in flexibility and reduction of body weight. Cranial simplification combined with the shortening of the vertebral column and the shift towards a partly firmisternal girdle might be adaptations to the peculiar tumbling behaviour displayed by Oreophrynella
    • …
    corecore