118 research outputs found

    Evidence for a biphasic mode of respiratory syncytial virus transmission in permissive HEp2 cell monolayers

    Get PDF
    Distribution of the M2-1, P, N, SH, F M and G proteins in the infected cell clusters. (A) HEp2 cell monolayers were infected with RSV using an multiplicity of infection of 0.0002 and at 2 days post-infection (dpi) the cells were fixed and stained using either anti-M2-1, anti-P, anti-N, anti-SH, anti-F, anti-M or anti-G and stained cells were then viewed using fluorescence microscopy (objective x20). (B) An infected cells cluster examined at higher magnification (objective x40 magnification) or (objective x100 magnification). The infected cell clusters (long white arrows) are indicated. Inset, an enlarged imaged where virus filaments (short white arrows) are highlighted. (TIF 1152 kb

    Infectious Diseases and Their Outbreaks in Asia-Pacific: Biodiversity and Its Regulation Loss Matter

    Get PDF
    Despite increasing control measures, numerous parasitic and infectious diseases are emerging, re-emerging or causing recurrent outbreaks particularly in Asia and the Pacific region, a hot spot of both infectious disease emergence and biodiversity at risk. We investigate how biodiversity affects the distribution of infectious diseases and their outbreaks in this region, taking into account socio-economics (population size, GDP, public health expenditure), geography (latitude and nation size), climate (precipitation, temperature) and biodiversity (bird and mammal species richness, forest cover, mammal and bird species at threat). We show, among countries, that the overall richness of infectious diseases is positively correlated with the richness of birds and mammals, but the number of zoonotic disease outbreaks is positively correlated with the number of threatened mammal and bird species and the number of vector-borne disease outbreaks is negatively correlated with forest cover. These results suggest that, among countries, biodiversity is a source of pathogens, but also that the loss of biodiversity or its regulation, as measured by forest cover or threatened species, seems to be associated with an increase in zoonotic and vector-borne disease outbreaks

    Japanese Encephalitis, Singapore

    Get PDF
    10.3201/eid1203.051251Emerging Infectious Diseases123525-52

    Intestinal parasitic infections and environmental water contamination in a rural village of northern Lao PDR

    Get PDF
    A field survey studying intestinal parasites in humans and microbial pathogen contamination at environment was performed in a Laotian rural village to identify potential risks for disease outbreaks. A parasitological investigation was conducted in Ban Lak Sip village, Luang Prabang, Lao PDR involving fecal samples from 305 inhabitants as well as water samples taken from 3 sites of the local stream. Water analysis indicated the presence of several enteric pathogens, i.e., Aeromonas spp., Vibrio spp., E. coli H7, E. coli O157: H7, verocytotoxin-producing E. coli (VTEC), Shigella spp., and enteric adenovirus. The level of microbial pathogens contamination was associated with human activity, with greater levels of contamination found at the downstream site compared to the site at the village and upstream, respectively. Regarding intestinal parasites, the prevalence of helminth and protozoan infections were 68.9% and 27.2%, respectively. Eight helminth taxa were identified in fecal samples, i.e., 2 tapeworm species (Taenia sp. and Hymenolepis diminuta), 1 trematode (Opisthorchis sp.), and 5 nematodes (Ascaris lumbricoides, Trichuris trichiura, Strongyloides stercoralis, trichostrongylids, and hookworms). Six species of intestinal protists were identified, i.e., Blastocystis hominis, Cyclospora spp., Endolimax nana, Entamoeba histolytica/E. dispar, Entamoeba coli, and Giardia lamblia. Questionnaires and interviews were also conducted to determine risk factors of infection. These analyses together with a prevailing infection level suggested that most of villagers were exposed to parasites in a similar degree due to limited socio-economic differences and sharing of similar practices. Limited access to effective public health facilities is also a significant contributing factor

    Differing clinical characteristics between influenza strains among young healthy adults in the tropics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Influenza infections may result in different clinical presentations. This study aims to determine the clinical differences between circulating influenza strains in a young healthy adult population in the tropics.</p> <p>Methods</p> <p>A febrile respiratory illness (FRI) (fever ≥ 37.5°C with cough and/or sore throat) surveillance program was started in 4 large military camps in Singapore on May 2009. Personnel with FRI who visited the camp clinics from 11 May 2009 to 25 June 2010 were recruited. Nasal washes and interviewer-administered questionnaires on demographic information and clinical features were obtained from consenting participants. All personnel who tested positive for influenza were included in the study. Overall symptom load was quantified by counting the symptoms or signs, and differences between strains evaluated using linear models.</p> <p>Results</p> <p>There were 434 (52.9%) pandemic H1N1-2009, 58 (7.1%) seasonal H3N2, 269 (32.8%) influenza B, and 10 (1.2%) seasonal H1N1 cases. Few seasonal influenza A (H1N1) infections were detected and were therefore excluded from analyses, together with undetermined influenza subtypes (44 (1.5%)), or more than 1 co-infecting subtype (6 (0.2%)). Pandemic H1N1-2009 cases had significantly fewer symptoms or signs (mean 7.2, 95%CI 6.9-7.4, difference 1.6, 95%CI 1.2-2.0, <it>p </it>< 0.001) than the other two subtypes (mean 8.7, 95%CI 8.5-9.0). There were no statistical differences between H3N2 and influenza B (<it>p </it>= 0.58). Those with nasal congestion, rash, eye symptoms, injected pharynx or fever were more likely to have H3N2; and those with sore throat, fever, injected pharynx or rhinorrhoea were more likely to have influenza B than H1N1-2009.</p> <p>Conclusions</p> <p>Influenza cases have different clinical presentations in the young adult population. Pandemic H1N1 influenza cases had fewer and milder clinical symptoms than seasonal influenza. As we only included febrile cases and had no information on the proportion of afebrile infections, further research is needed to confirm whether the relatively milder presentation of pandemic versus seasonal influenza infections applies to all infections or only febrile illnesses.</p

    Monkeypox (Mpox) requires continued surveillance, vaccines, therapeutics and mitigating strategies

    Get PDF
    The widespread outbreak of the monkeypox virus (MPXV) recognized in 2022 poses new challenges for public healthcare systems worldwide. With more than 86,000 people infected, there is concern that MPXV may become endemic outside of its original geographical area leading to repeated human spillover infections or continue to be spread person-to-person. Fortunately, classical public health measures (e.g., isolation, contact tracing and quarantine) and vaccination have blunted the spread of the virus, but cases are continuing to be reported in 28 countries in March 2023. We describe here the vaccines and drugs available for the prevention and treatment of MPXV infections. However, although their efficacy against monkeypox (mpox) has been established in animal models, little is known about their efficacy in the current outbreak setting. The continuing opportunity for transmission raises concerns about the potential for evolution of the virus and for expansion beyond the current risk groups. The priorities for action are clear: 1) more data on the efficacy of vaccines and drugs in infected humans must be gathered; 2) global collaborations are necessary to ensure that government authorities work with the private sector in developed and low and middle income countries (LMICs) to provide the availability of treatments and vaccines, especially in historically endemic/enzootic areas; 3) diagnostic and surveillance capacity must be increased to identify areas and populations where the virus is present and may seed resurgence; 4) those at high risk of severe outcomes (e.g., immunocompromised, untreated HIV, pregnant women, and inflammatory skin conditions) must be informed of the risk of infection and be protected from community transmission of MPXV; 5) engagement with the hardest hit communities in a non-stigmatizing way is needed to increase the understanding and acceptance of public health measures; and 6) repositories of monkeypox clinical samples, including blood, fluids, tissues and lesion material must be established for researchers. This MPXV outbreak is a warning that pandemic preparedness plans need additional coordination and resources. We must prepare for continuing transmission, resurgence, and repeated spillovers of MPXV.We would like to thank Drs. Ming Fan at East Carolina University and Dara Wambach and her team at Johnson & Johnson for critically reviewing the manuscript.info:eu-repo/semantics/publishedVersio

    Monkeypox (Mpox) requires continued surveillance, vaccines, therapeutics and mitigating strategies

    Get PDF
    The widespread outbreak of the monkeypox virus (MPXV) recognized in 2022 poses new challenges for public healthcare systems worldwide. With more than 86,000 people infected, there is concern that MPXV may become endemic outside of its original geographical area leading to repeated human spillover infections or continue to be spread person-to-person. Fortunately, classical public health measures (e.g., isolation, contact tracing and quarantine) and vaccination have blunted the spread of the virus, but cases are continuing to be reported in 28 countries in March 2023. We describe here the vaccines and drugs available for the prevention and treatment of MPXV infections. However, although their efficacy against monkeypox (mpox) has been established in animal models, little is known about their efficacy in the current outbreak setting. The continuing opportunity for transmission raises concerns about the potential for evolution of the virus and for expansion beyond the current risk groups. The priorities for action are clear: 1) more data on the efficacy of vaccines and drugs in infected humans must be gathered; 2) global collaborations are necessary to ensure that government authorities work with the private sector in developed and low and middle income countries (LMICs) to provide the availability of treatments and vaccines, especially in historically endemic/enzootic areas; 3) diagnostic and surveillance capacity must be increased to identify areas and populations where the virus is present and may seed resurgence; 4) those at high risk of severe outcomes (e.g., immunocompromised, untreated HIV, pregnant women, and inflammatory skin conditions) must be informed of the risk of infection and be protected from community transmission of MPXV; 5) engagement with the hardest hit communities in a non-stigmatizing way is needed to increase the understanding and acceptance of public health measures; and 6) repositories of monkeypox clinical samples, including blood, fluids, tissues and lesion material must be established for researchers. This MPXV outbreak is a warning that pandemic preparedness plans need additional coordination and resources. We must prepare for continuing transmission, resurgence, and repeated spillovers of MPXV
    corecore