36 research outputs found

    Heritability and Artificial Selection on Ambulatory Dispersal Distance in Tetranychus urticae: Effects of Density and Maternal Effects

    Get PDF
    Dispersal distance is understudied although the evolution of dispersal distance affects the distribution of genetic diversity through space. Using the two-spotted spider mite, Tetranychus urticae, we tested the conditions under which dispersal distance could evolve. To this aim, we performed artificial selection based on dispersal distance by choosing 40 individuals (out of 150) that settled furthest from the home patch (high dispersal, HDIS) and 40 individuals that remained close to the home patch (low dispersal, LDIS) with three replicates per treatment. We did not observe a response to selection nor a difference between treatments in life-history traits (fecundity, survival, longevity, and sex-ratio) after ten generations of selection. However, we show that heritability for dispersal distance depends on density. Heritability for dispersal distance was low and non-significant when using the same density as the artificial selection experiments while heritability becomes significant at a lower density. Furthermore, we show that maternal effects may have influenced the dispersal behaviour of the mites. Our results suggest primarily that selection did not work because high density and maternal effects induced phenotypic plasticity for dispersal distance. Density and maternal effects may affect the evolution of dispersal distance and should be incorporated into future theoretical and empirical studies

    Local Adaptation of Aboveground Herbivores towards Plant Phenotypes Induced by Soil Biota

    Get PDF
    Background: Soil biota may trigger strong physiological responses in plants and consequently induce distinct phenotypes. Plant phenotype, in turn, has a strong impact on herbivore performance. Here, we tested the hypothesis that aboveground herbivores are able to adapt to plant phenotypes induced by soil biota. Methodology and Principal Findings: We bred spider mites for 15 generations on snap beans with three different belowground biotic interactions: (i) no biota (to serve as control), (ii) arbuscular mycorrhizal fungi and (ii) root-feeding nematodes. Subsequently, we conducted a reciprocal selection experiment using these spider mites, which had been kept on the differently treated plants. Belowground treatments induced changes in plant biomass, nutrient composition and water content. No direct chemical defence through cyanogenesis was detected in any of the plant groups. Growth rates of spider mites were higher on the ecotypes on which they were bred for 15 generations, although the statistical significance disappeared for mites from the nematode treatment when corrected for all multiple comparisons. Conclusion/Significance: These results demonstrate that belowground biota may indeed impose selection on the aboveground insect herbivores mediated by the host plant. The observed adaptation was driven by variable quantitativ

    Global urban environmental change drives adaptation in white clover

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale

    Dagvlinders aan de Vlaamse kust: parels voor de duinen?

    No full text

    Habitat use and mobility of two threatened coastal dune insects: implications for conservation

    No full text
    We studied the habitat use and mobility of the Grayling butterfly (Hipparchia semele) and the Blue-Winged Grasshopper (Oedipoda caerulescens), two threatened insects within spatially structured blond and grey dunes in a nature reserve along the Belgian coast. Although both species occur in the same biotope, H. semele were more abundant in open, dynamic sites with a relatively high amount of bare sand, while O. caerulescens preferred sheltered, more stable environments with a lower amount of bare sand. Unlike H. semele, substrate use varied in accordance to body colouration in O. caerulescens, especially on cold days, with light-coloured animals being more abundant on sand and dark-coloured animals more abundant on moss. During a mark-recapture-study, we marked 493 Grayling butterflies and 1289 Blue-Winged Grass-hoppers. On average, both sexes of H. semele were equally mobile (about 150 m/day; maximum recorded distance of about 1700 m) while male O. caerulescens were significantly more mobile than females (daily average 47 vs. 5 m; maximum distances observed for O. caerulescens were about 800 m). The importance of habitat heterogeneity (within and among patches) and the consequences of habitat use and mobility of both species for the conservation of typical coastal dune habitats are discussed. The complementary use of species-specific information to site-based management measures is advocated

    Environmental Adaptations, Ecological Filtering, and Dispersal Central to Insect Invasions

    No full text
    International audienceInsect invasions, the establishment and spread of nonnative insects in new regions, can have extensive economic and environmental consequences. Increased global connectivity accelerates rates of introductions, while climate change may decrease the barriers to invader species' spread. We follow an individual-level insect- and arachnid-centered perspective to assess how the process of invasion is influenced by phenotypic heterogeneity associated with dispersal and stress resistance, and their coupling, across the multiple steps of the invasion process. We also provide an overview and synthesis on the importance of environmental filters during the entire invasion process for the facilitation or inhibition of invasive insect population spread. Finally, we highlight important research gaps and the relevance and applicability of ongoing natural range expansions in the context of climate change to gain essential mechanistic insights into insect invasions
    corecore