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17 years of grassland management leads to parallel local
and regional biodiversity shifts among a wide range
of taxonomic groups
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Abstract Conservation management is expected to increase local biodiversity, but uni-

form management may lead to biotic homogenization and diversity losses at the regional

scale. We evaluated the effects of renewed grazing and cutting management carried out

across a whole region, on the diversity of plants and seven arthropod groups. Changes in

occurrence over 17 years of intensive calcareous grassland management were analysed at

Communicated by Jens Wolfgang Dauber.

Electronic supplementary material The online version of this article (doi:10.1007/s10531-016-1269-5)
contains supplementary material, which is available to authorized users.

& C. G. E. van Noordwijk
toos.vannoordwijk@gmail.com

1 Department of Animal Ecology and Ecophysiology, Institute for Water and Wetland Research,
Radboud University Nijmegen, Heijendaelseweg 135, 6525 AJ Nijmegen, The Netherlands

2 Bargerveen Foundation, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

3 Department of Biology, Terrestrial Ecology Unit, Ghent University, K. L. Ledeganckstraat 35,
9000 Ghent, Belgium

4 Earthwatch Institute, Mayfield House, 256 Banbury Road, Oxford OX2 7DE, UK

5 Department of Forest & Water Management, Forest & Nature Lab, Ghent University,
Geraardsbergsesteenweg 267, 9090 Gontrode, Belgium

6 Loopkeverstichting (SFOC), Esdoorndreef 29, 6871 LK Renkum, The Netherlands

7 Biosystematics Group, Wageningen University, Generaal Foulkesweg 37, 6703 BL Wageningen,
The Netherlands

8 Gemene Bos 12, 1861 HG Bergen, The Netherlands

9 Centre for Ecosystem Studies, Alterra, Wageningen UR, P.O. Box 47, 6700 AA Wageningen,
The Netherlands

10 Kortenburg 31, 6704 AV Wageningen, The Netherlands

123

Biodivers Conserv (2017) 26:717–734
DOI 10.1007/s10531-016-1269-5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191476753?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s10531-016-1269-5
http://crossmark.crossref.org/dialog/?doi=10.1007/s10531-016-1269-5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10531-016-1269-5&amp;domain=pdf


the species level, which gave insight into the exact species contributing to regional

homogenization or differentiation. Reponses were compared between species differing in

habitat affinity, dispersal ability, food specialisation and trophic level. Local species

richness increased over the sampling period for true bugs and millipedes, while carabid

beetles and weevils declined in local species richness. Species richness remained

unchanged for plants, woodlice, ants and spiders. Regional diversity and compositional

variation generally followed local patterns. Diversity shifts were only to a limited extent

explained by species’ habitat affinity, dispersal ability, trophic level and food specialisa-

tion. We conclude that implementation of relatively uniform conservation management

across a region did not lead to uniform changes in local species composition. This is an

encouraging result for conservation managers, as it shows that there is not necessarily a

conflict of interest between local and regional conservation goals. Our study also

demonstrates that shifts in diversity patterns differ markedly between taxonomic groups.

Single traits provide only limited understanding of these differences. This highlights the

need for a wide taxonomic scope when evaluating conservation management and

demonstrates the need to understand the mechanisms underlying occurrence shifts.

Keywords Beta-diversity � Insects � Arthropods � Plants � Conservation management �
Trait

Introduction

Semi-natural habitats have suffered large diversity losses due to land use change, aban-

donment, eutrophication and fragmentation (Millenium Ecosystem Assessment 2005). This

has led to regional diversity losses, both through decreased local species richness and

through biotic homogenization (McKinney and Lockwood 1999, 2001; Ekroos et al. 2010).

Biotic homogenization is the non-random loss and gain of species leading to reduced

compositional variation (b-diversity) among communities, usually caused by a loss of rare

specialist species and an increase in common generalist species (McKinney and Lockwood

1999; Olden et al. 2004). The resulting genetic, taxonomic and functional impoverishment

is viewed as a major threat to biodiversity (Olden et al. 2004; Mouillot et al. 2013). Biotic

homogenization has been demonstrated to occur across nearly all taxonomic groups, spatial

scales and grain sizes (Baiser et al. 2012). This makes it paramount to understand how

biotic homogenization can be counteracted at each of these scales.

At the site scale, unimproved semi-natural grasslands, have often suffered biodiversity

losses due to abandonment of traditional management practices, which leads to grass and
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shrub encroachment. Such losses can potentially be restored through renewed conservation

management like grazing or mowing (Bobbink and Willems 1993; Hobbs and Norton

1996; Pykälä 2003; Pöyry et al. 2004). However, the effect of such management practices

on regional biodiversity and the compositional variation among sites has yet received little

attention. Theoretically, conservation and restoration management carried out across

multiple sites within a region can have multiple effects on regional diversity patterns

(Rooney et al. 2007). If the management strengthens inherent environmental differences

between sites, different specialist species will be attracted to each site, increasing regional

biodiversity and the compositional variation among sites (scenario A in Fig. 1). However,

if all sites change in the same way, because they are all subject to the same management

regime, compositional variation among sites may decrease, leading to increased homog-

enization (Konvicka et al. 2008; Verberk et al. 2010) and decreased regional diversity

(scenario B in Fig. 1). If local diversity does not increase after renewed management, the

compositional variation among sites may still increase, e.g. due to a reduction in generalist

species that occur across all sites prior to management (scenario C in Fig. 1). Finally,

management can fail to increase both local and regional diversity (scenario D in Fig. 1).

This is, for example, the case when characteristic species are unable to return due to

dispersal limitations (Donath et al. 2003; Ozinga et al. 2005; Woodcock et al. 2010a).

Conservation management may thus have contrasting effects on local and regional

diversity patterns and may lead to increased biotic differentiation or conversely, amplify

biotic homogenization.

In addition to potential discrepancies between responses of local and regional diversity

to conservation management, there may also be differences between taxonomic groups. It
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Fig. 1 Potential effects of conservation management on local diversity (a) and the compositional variation
among sites (b-diversity). Each situation (A–D) depicts two hypothetical sites within a region, with different
symbols depicting different species. From the initial situation (in the middle), management can lead to:
A Increased species richness and compositional variation, e.g. by strengthening inherent environmental
differences between sites, which attract different species to different sites; B Increased species richness, but
decreased compositional variation, caused by all sites changing in the same way; C Decreased species
richness, but increased compositional variation, e.g. through a reduction in common (generalist) species,
while still strengthening inherent environmental differences between sites; D Decreased species richness and
compositional variation, due to negative side effects (e.g. overgrazing) and/or the inability of species to
recolonize restored sites due to dispersal limitations
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has repeatedly been demonstrated that the response of species to conservation management

differs markedly among taxonomic groups (Kruess and Tscharntke 2002; Oertli et al. 2005;

van Klink et al. 2015). Such taxonomical variation has been linked to various species’

characteristics, including dispersal ability, habitat and food specialization and trophic

level. Species with a well-developed dispersal ability colonise restored habitat at a higher

rate than poorly dispersing species (Ozinga et al. 2005; Lambeets et al. 2009; Öckinger

et al. 2010; Woodcock et al. 2010a, 2012). Characteristic species and food specialists are

generally more vulnerable to habitat degradation (Römermann et al. 2008; Öckinger et al.

2010), but are also expected to respond more positively to renewed management than non-

characteristic and food generalist species, because habitat conditions improve most for

them. Finally, a species’ trophic position modulates its sensitivity to processes operating at

larger spatial scales (Holt et al. 1999; Vanbergen et al. 2010; van Noordwijk et al. 2015),

making higher trophic levels more vulnerable to habitat fragmentation (Purtauf et al. 2005;

Krauss et al. 2010; van Noordwijk et al. 2015). These species characteristics vary between

species and, even more so, between taxonomic groups. So far, remarkably few studies have

simultaneously investigated changes in regional diversity patterns for more than one tax-

onomic group (Baiser et al. 2012, but see Shaw et al. 2010).

In this study we investigate shifts in local and regional diversity patterns over 17 years

of conservation management. We use a unique dataset of presence/absence data for plants

and seven arthropod groups in eight calcareous grasslands within a single region. All study

sites are similar in geology and climate and suffered from agricultural intensification,

eutrophication and abandonment of traditional farming practices over the course of the

twentieth century (Willems 2001). This resulted in strong declines in species richness,

especially among initially rare, characteristic plant and arthropod species (WallisDeVries

et al. 2002; Smits 2010). This, in turn, led to biotic homogenization (Polus et al. 2007;

Smits 2010; Ekroos et al. 2010). To mitigate these negative effects of land-use change and

eutrophication, conservation management was introduced in the 1980ies. In all sites,

conservation management consisted of annual intensive grazing and/or mowing in autumn,

although details of management execution differed between sites and years.

Our dataset covers all calcareous grassland sites within the Dutch region of South-

Limburg that were of reasonable conservation value and had a surface area of more than

1 ha. in 1988. Combined with the fact that conservation management of a similar type was

introduced in all sites around the same time, this makes our dataset uniquely suitable to

investigate the effects of conservation actions on local and regional diversity patterns.

Using a species-based approach we specifically investigate (1) whether 17 years of con-

servation management have led to increased local biodiversity, (2) whether this has led to

increased regional biodiversity and increased biotic differentiation, or conversely, biotic

homogenization, (3) whether shifts in local and regional diversity differ between taxo-

nomic groups and (4) whether simple species characteristics such as dispersal ability,

trophic level and the degree of food specialisation explain interspecific variation in

occurrence shifts.
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Methods

Study region

The study was conducted in eight calcareous grasslands in South-Limburg, the Netherlands

(see Appendix S1), which comprises all calcareous grassland sites within this region that

were of reasonable conservation value and had a surface area of more than 1 ha. in 1988.

South-Limburg has an undulating hilly landscape up to 323 m above sea level. The main

soil type is loess with calcareous deposits occurring close to the surface on some of the

slopes. Most of the landscape is used for agricultural production, with forest and semi-

natural grassland remnants predominantly limited to the steeper slopes (Willems 2001).

The study sites range in surface area from one to five hectares and are all located on slopes

with an eastern, southern, or western aspect. They were originally grazed by sheep until the

early twentieth century and were subsequently abandoned or irregularly managed for

several decades. One site (Wrakelberg) was partially used as an arable field for a short

period in the 1960s, but was quickly restored to calcareous grassland through natural

regeneration. The top section of the site, which was never ploughed, acted as a seed source.

All other sites have a continuous history as calcareous grassland. Regular management for

nature conservation purposes was introduced in all sites between 1978 and 1990 and

consisted of annual intensive sheep grazing and/or large scale mechanical mowing

(Willems 2001). All sites were intensively managed in autumn, resulting in a homoge-

neous, short sward over winter. Some sites were additionally (partially) grazed for a short

period in summer. The management method, timing and intensity remained largely

unchanged throughout the study period, although management details (exact stocking

density, rotation scheme within sites, exact timing, etc.) fluctuated from year to year.

Data collection

Arthropods were sampled by means of standardised pitfall sampling in 1988, shortly after

or around the time of renewed regular conservation management and again in 2005 or 2006

(referred to as 2005). All true bugs (Heteroptera), carabid beetles (Coleoptera, Carabidae),

weevils (Coleoptera, Curculionidae), ants (Hymenoptera, Formicidae), spiders (Araneae),

woodlice (Isopoda) and millipedes (Diplopoda) were identified to species level (see

Appendix S2 for more details, including nomenclature). Because of the applied pitfall

sampling, our data represent the ground dwelling proportion of the sampled species groups

only, rather than a complete overview of species. Vegetation data were taken from the

Dutch Vegetation Database (Schaminée et al. 2012) covering the periods 1970-1992 (re-

ferred to as 1988) and 1997–2007 (referred to as 2005). Details on the number and size of

relevees are given in Appendix S2. Where sampling efforts differed between the two

sampling periods, we took random subsamples to obtain a balanced dataset (see Appendix

S2).

Using published literature, we compiled a dataset on species’ trophic level (primary

producers, first order consumers, predators and detritivores), habitat affinity (characteristic

versus non characteristic species for calcareous grasslands), food specialisation (mono-

phagous, oligophagous and generalist) and dispersal ability (good, poor and unknown). All

literature sources and trait attributes per species are listed in Appendix S3. Species which

shift in trophic level during their life-cycle (notably a few carabid species) were classified

according to their larval characteristics, because larvae are generally less mobile and more
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vulnerable to adverse microclimatic conditions and food shortages than adults (Thiele

1977; Bourn and Thomas 2002; Fartmann and Hermann 2006). Habitat affinity was

classified as ‘characteristic’ if species mainly occur in dry, nutrient poor grasslands and as

‘non-characteristic’ if they are (also) common in wet or nutrient rich grasslands or

woodlands. Good and poor dispersal ability were defined respectively as presence or

absence of long distance dispersal strategies (LDD) in plants and as presence or absence of

individuals capable of active flight for carabid beetles, weevils and true bugs. For ants,

dispersal ability was judged from their life history strategy (van Noordwijk et al. 2012a),

with species mainly founding new nests through social-parasitism or nest-splitting defined

as poor dispersers. For spiders, dispersal ability was categorized based on behaviour traits,

including ballooning. For millipedes and woodlice body size was used as a substitute for

dispersal ability. Body-size is not an ideal proxy for dispersal ability, but there is evidence

that it is strongly related to dispersal (Stevens et al. 2014). More accurate estimates of

actual dispersal ability were not available for millipedes. For woodlice, we could have used

unpublished measurements of walking speed, but we decided against this, because it is

unclear how the proxy individual walking speed relates to species level dispersal ability.

For all taxonomic groups, a third category was made, containing species for which the

dispersal ability is unknown.

Statistical analysis

Statistical analyses were performed per taxonomic group. Results were structured

according to the overall trophic level of the taxonomic group, but for all species-based

analysis the actual trophic level of each species was used (e.g. carabid beetles were

included in tables and figures as predators, but in individual analyses, granivorous species

were labelled as first order consumers). For vascular plants all analyses were performed for

each of the replicate datasets (see Appendix S2) and results were averaged. First, the mean

species richness per site and sampling period was calculated (a-diversity) as well as the
total number of species for each sampling period (c-diversity). Changes in a-diversity per

site were calculated using the formula: Da ¼ a½new��a½old�
a½new�þa½old�. This means that Da can range

from -1 to 1 and that negative values represent a decrease in species richness, while

positive values represent an increase. Changes in c-diversity were calculated analogously.

Generalized estimation equations were used to test for significant changes in a-diversity
(dependent variable) over time (independent variable), using a Poisson distribution and

sites as the grouping variable. A two-sided Pearson correlation test was used to establish

whether changes in a- and c-diversity were correlated across taxonomic groups. To

visualise species-turnover rates, the fraction of occupied sites in 1988 was plotted against

the fraction of occupied sites in 2005 for each species.

The compositional variation among sites (b-diversity) was quantified with a model-

based multiple-site metric D. This metric was developed by Baeten et al. (2014) and is in

line with new model-based thinking for the analysis of community data (Warton et al.

2015). The metric is derived from a species-level measure of heterogeneity of occurrence

(Di), summed across the species. D is low if the community dataset has many species that

are either rare (absent in most sites) or prevalent (present in most sites). Such species do

not contribute much to the compositional variation among communities. Homogenization

occurs if many species decrease their heterogeneity of occurrence over time (DDi\ 0, so

their sum DD\ 0), i.e., rare species becoming rarer or prevalent species becoming more

prevalent. Differentiation occurs when most species increase their heterogeneity
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(DDi[ 0). This method was chosen instead of classical diversity metrics, such as the

Shannon diversity index, because it is not biased by differences in alpha diversity (Baeten

et al. 2014) and is based on the individual species responses that were observed, rather than

summary statistics derived from those observations. This allows to separate homogenizing

effects caused by species becoming prevalent from those caused by species becoming very

rare. In addition, it allows to analyse the effects of species’ traits without the need to

average categorical trait attributes, making this method particularly suitable for the

questions addressed here.

The significance of species-level and community-level homogenization or differentia-

tion was tested with a permutation test (999 permutations). Permutational analysis of

variance (PERMANOVA, 999 permutations) was also used to test for effects of the traits

trophic level, dispersal ability, habitat affinity and food specialism (independent variables)

on the individual species responses DDi and change in occupancy over time (fraction

occupied sites 1988 minus fraction occupied sites 2005). Only main traits and two-way

interactions were included in this analysis and preliminary tests were performed to

determine the order in which traits should be added to the model (most influential traits

were added first). All analyses were carried out in R (R Core Team 2013) using the

packages Geepack (Højsgaard et al. 2006) and Vegan (Oksanen et al. 2013).
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Results

Local diversity

We found no consistent change in local species richness (a-diversity) over 17 years of

calcareous grassland management (Fig. 2). Carabid beetles and weevils decreased in a-
diversity, while true bugs and millipedes showed an increase in local species richness

(Table 1). Local richness of plants, spiders, ants and woodlice did not change over time.

Regional diversity and compositional variation

Regional diversity (c-diversity) patterns generally followed local patterns (Pearson

R2 = 0.75; df = 6; p = 0.006), with carabid beetles decreasing in c-diversity, while c-
diversity increased for true bugs and millipedes (see Table 1). Few species had identical

relative frequencies in both sampling periods (along diagonal in Fig. 3). This implies that

considerable species turn-over occurred over time for all groups. This could cause

increased biotic homogenization or differentiation, independent of local species richness

changes. However, significant changes in compositional variation among sites was only

found for two taxonomic groups. Carabid beetle communities became increasingly

homogenized over time (Table 2), mainly because many initially rare species became rarer

(Fig. 3). In contrast, millipede communities became increasingly differentiated (Table 2),

due to some rare species becoming more prevalent as well as some common species

becoming rarer (Fig. 3).

Species characteristics

Shifts in local and regional diversity were not consistent within trophic levels (see Fig. 3).

For example, opposing diversity shifts were found for true bugs and weevils, the two first

order consumer groups included in our study. Also, none of the species characteristics

included in our analysis consistently explained species replacement patterns across taxo-

nomic groups (see Appendix S4). However, within taxonomic groups, the tested species

characteristics did explain some of the variation in species turnover. Habitat affinity was

Table 1 Change in mean species richness per site between 1988 and 2005 (D a-diversity), p value for the
generalized estimation equation (GEE) testing for significant changes in a-diversity and change in overall
species richness (D c-diversity) per taxonomic group

Trophic level Taxonomic group D a-diversity p value D c-diversity

Primary producers Plants 0.012 0.588 -0.045

Macrodetritivores Woodlice 0.015 0.785 -0.125

Millipedes 0.081 0.025 0.157

1st order consumers True bugs 0.371 0.008 0.293

Weevils -0.117 0.011 0.000

Predators Carabid beetles -0.186 <0.001 -0.206

Spiders -0.004 0.922 0.009

Ants 0.020 0.508 0.050

Groups showing a significant change in a-diversity (p\ 0.05) are bold
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becoming more prevalent), species in the white triangles cause increased differentiation
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Table 2 Results of the delta deviance analyses per taxonomic group

Trophic level Taxonomic group n sites n species DD p

Primary producers Plants 7 223 -97.51 0.447

Macrodetritivores Woodlice 6 10 -31.50 0.119

Millipedes 6 25 60.23 0.030

1st order consumers True bugs 8 64 183.69 0.061

Weevils 8 54 -16.04 0.625

Predators Carabid beetles 8 91 -199.89 0.029

Spiders 8 151 1.309 0.988

Ants 6 23 13.24 0.612

Significant results (p\ 0.05) are given in bold and represent overall biotic homogenization for negative
values of delta deviance and overall differentiation for positive values of delta deviance
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significantly related to the decrease or increase of spiders (Permanova: df = 1, 144;

R2 = 0.036; p = 0.026), with characteristic species increasing more than others (Fig. 4a).

The interaction between habitat affinity and dispersal ability significantly explained which

spider species contributed to overall homogenization or differentiation (Permanova:

df = 1, 144; R2 = 0.044; p = 0.011). Good dispersers initially occurred in more sites than

poor dispersers. For the initially rare characteristic species with poor dispersal ability an

increase in occurrence led to an increase in compositional variation. For the initially more

widespread characteristic species with good dispersal ability the same increase in occu-

pancy had no effect on the compositional variation between sites. Conversely, the decline

of non-characteristic species with poor dispersal ability led to homogenization, as initially

rare species became rarer. The same decline had no effect on the compositional variation

among sites for non-characteristic species with good dispersal abilities, which were ini-

tially more widespread (Fig. 4a). For plants there was a trend towards interaction (Per-

manova: df = 1, 219; R2 = 0.018; p = 0.060) between habitat affinity and dispersal

ability on the decrease or increase in occurrence (Fig. 4b). Characteristic species tended to

increase more than other species, but only if they exhibit long distance dispersal strategies.

Poorly dispersing characteristic species tended to decrease in occurrence, even more so

than non-characteristic species. For woodlice, body size had a significant effect on the

change in occurrence over time (Permanova: df = 1, 6; R2 = 0.70; p = 0.003). Large

woodlice increased in occurrence, while small woodlice decreased over time (Fig. 4c).

For weevils, a significant difference in occurrence change was found between food

specialists and generalists (Permanova: df = 1, 47; R2 = 0.089; P = 0.024). Mono-

phagous species on average increased in occurrence, while oligophagous and polyphagous

species tended to decrease in occurrence over time (Fig. 4d). With respect to trophic level,

no significant effects were found within taxonomic groups, although for true bugs there

was a trend towards phytophagous species increasing more than zoophagous species

(Permanova: df = 1, 50; R2 = 0.062; p = 0.057, Fig. 4e).

Discussion

Conservation management has been an effective tool to counteract diversity loss at local

scales (Bobbink and Willems 1993; Hobbs and Norton 1996; Pykälä 2003; Pöyry et al.

2004), but its effects on regional biodiversity remain little studied (but see Doxa et al.

2012). Using a unique dataset of species presence/absence data before and after 17 years of

conservation management for a wide range of taxonomic groups, we evaluated the effects

of conservation actions on both local and regional diversity patterns. Shifts in local and

regional biodiversity were highly correlated, indicating that there was no discrepancy

between local and regional conservation success. However, diversity shifts differed

markedly between taxonomic groups, with some taxa decreasing in local and regional

diversity, while others became more diverse over time.

Local diversity shifts

Over 17 years of conservation management, local species richness changed significantly

for half of the eight investigated taxonomic groups, with increased richness and decreased

richness each occurring in two taxonomic groups. Conservation management in Dutch

calcareous grasslands has thus not resulted in the anticipated increase in local species
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richness across taxonomic groups. A lack of response to conservation measures is often

attributed to slow recovery of plant and arthropod communities (Huxel and Hastings 1999;

Woodcock et al. 2012). However, considering the long time-span of our study (17 years),

we would expect to have picked up even relatively slow responses. The lack of recovery

may, in part, reflect a lack of source populations in the landscape. Our sampling sites

comprised all calcareous grassland sites of reasonable quality and more than 1 ha. in size

within the landscape. Species not present in any of these sites may have been completely

absent from the landscape and therefore unable to recolonize restored locations. The large

variation in species composition between sites, however, indicates that this is not the only

explanation. In the absence of control sites that did not receive conservation management,

we cannot automatically attribute observed shifts in diversity patterns (or the lack thereof)

to the implemented conservation management. Other factors that have affected the study

sites simultaneously, e.g. ongoing agricultural intensification in the wider landscape, may

have equally contributed to observed patterns, or may have cancelled out positive effects of

conservation management. Given the generally negative trend of (specialist) species in

northwestern European agricultural landscapes (Green et al. 2005; Kleijn et al. 2009; Potts

et al. 2010) and the considerable impact of the implemented conservation management on

vegetation structure and microclimate (Willems 2001; van Noordwijk et al. 2012a, b) it is

likely that local species richness would have declined in the absence of conservation

management. The fact that local species richness remained stable or increased for six out of

eight taxonomic groups, could therefore be seen as (moderate) conservation success. For

the two remaining groups, carabid beetles and weevils, the implemented conservation

management has not prevented local diversity loss. The management may even have

directly contributed to their decline, for example by causing increased mortality, food

shortages or unfavourable microclimatic conditions (van Klink et al. 2015).

Regional diversity and compositional variation

Local diversity shifts were strongly correlated to regional diversity shifts and were gen-

erally paralleled by shifts in compositional variation. We found increased community

differentiation in millipedes, which increased in local species richness, while carabid

beetles, which decreased in local species richness, became increasingly homogenized. This

implies that observed changes in compositional variation were caused predominantly by

changes in local species richness, rather than replacement of species (Baeten et al. 2014).

We found no evidence for increased biotic homogenization resulting from a limited set of

species profiting from the creation of similar environmental conditions across sites. This is

an encouraging result for site managers as it shows that there is not necessarily a conflict of

interest between local and regional conservation goals. Introducing similar conservation

management across sites thus does not necessarily compromise regional biodiversity

conservation by leading to sites becoming more similar in species composition.

Differences between taxonomic groups

In our study, we observed both increases and decreases in local and regional biodiversity

over 17 years of conservation management, depending on the taxonomic group under

study. Relatively few studies have simultaneously investigated biotic homogenization

patterns (Devin et al. 2005; Shaw et al. 2010) or the effects of conservation management

(Kruess and Tscharntke 2002; Oertli et al. 2005) on more than one taxonomic group.

Studies that do have a wide taxonomic scope, generally report differential responses
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between taxonomic groups (Kruess and Tscharntke 2002; Devin et al. 2005; Oertli et al.

2005; Shaw et al. 2010), in line with our results. The reason for this variation in response

between taxonomic groups is that species’ distributions are affected by many different

factors, including habitat fragmentation, regional land use, (micro)climatic conditions,

biomass production and vegetation structure (Morris 2000; Sala 2000). The relative

importance of each of these factors differs among taxonomic groups (Dormann et al.

2007). In addition, taxa also differ in their response to conservation management itself (van

Klink et al. 2015). The eight taxonomic groups we investigated differ in many respects,

including dispersal ability, trophic position, body plan and development pathway, which all

play a role in determining species’ responses to their environment (Verberk et al.

2008, 2013). We have not formally tested which factors explain the differences in diversity

shifts between taxonomic groups, because there are more potential factors than the number

of taxonomic groups in our study, which leaves insufficient statistical power for formal

testing. However, in our highly fragmented study system, dispersal ability is likely to play

a role. Fragmentation has repeatedly been demonstrated to hamper restoration of plant

communities (Ozinga et al. 2005; Smits 2010), poorly dispersing beetles (Woodcock et al.

2010b) and ants (van Noordwijk et al. 2012a). This potentially explains why these groups

did not increase in local and regional diversity in our study. True bugs, which showed the

largest increase in richness over the study period, are generally better dispersers and have

been shown previously to respond strongly to site conditions and not landscape factors

(K}orösi et al. 2012). Interestingly, the well-developed dispersal ability of many true bug

species did not lead to increased biotic homogenization. In fact, no single true bug species

was present in all study sites. This implies that either habitat characteristics differed

between restored sites (causing species sorting), or that distances between sites were too

large to ensure colonization of all sites, even for relatively good dispersers.

Contrary to our expectations, differences in trophic position did not seem to play a

direct role in determining the response of taxonomic groups. Predominantly predatory

groups showed negative (carabid beetle) and neutral (spiders and ants) changes in local

biodiversity, while first order consumers responded positively (true bugs) and negatively

(weevils). Interestingly, within both first order consumers and predators, the strongest

decrease in diversity was found for holometabolous taxonomic groups (carabid beetles and

weevils), while hemimetabolous groups responded more positively (true bugs and spiders).

Holometabolous species generally have a more strongly synchronised life-cycle and their

immature stages are less mobile and need different environmental conditions than the adult

stages. This makes holometabolous species particularly sensitive to management timing,

intensity and scale (van Noordwijk et al. 2012b; van Klink et al. 2015), indicating that too

intensive management may have hampered restoration of carabid beetle and weevil

communities.

It should be noted here that our study design, with only two sampling periods, makes it

impossible to conclude unequivocally whether observed diversity changes represent

ongoing shifts or mere year to year fluctuations. For example, carabid beetles are known to

exhibit considerable annual population fluctuations (Baars and Van Dijk 1984; den Boer

1985, 1990; Brooks et al. 2012), presenting an alternative explanation for their observed

decline in local and regional diversity. However, even if the observed diversity decline for

carabid beetles is caused by annual population fluctuations rather than a decreasing trend,

there is still reason for concern. The small size of individual sites (\5 ha.) and the large

distance between sites, make species with large population fluctuations especially prone to

local extinction (Henle et al. 2004; van Noordwijk et al. 2015).
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Species characteristics

In addition to the variation in responses between taxonomic groups, species within each

group also differ in life-history, and hence in vulnerability to all the different factors

affecting biodiversity (Stearns 1976; Southwood 1977). This causes a multitude of

responses within each group, which are likely to cancel each other out and obscure overall

patterns. Analyzing species’ traits may help to disentangle such contrasting effects and our

species-level analysis provides a unique opportunity to investigate consistent trait patterns.

Conservation management is primarily aimed at improving conditions for characteristic

species. A greater increase in characteristic calcareous grassland species, compared to

habitat generalists, was indeed found for spiders. The fact that the replacement of non-

characteristic spiders by characteristic species did not result in overall changes in com-

positional variation among sites, means that replacement was independent of the initial

occurrence. Indeed, if both rare and prevalent characteristic species increase over time,

there is no net-effect on the compositional variation. For weevils we found an effect of

food type specialization with food specialists like Sibinia pyrrhodactyla, Strophosoma

fulvicorne, Trachyphloeus alternans, Trichosirocalus troglodytes and Tychius squamulatus

increasing more in occupancy than food generalists. This implies that conditions generally

improved for these food specialists, which all feed on forbs that are well adapted to dry,

nutrient poor conditions (Spergula arvensis, Calluna vulgaris, Helianthemum nummula-

rium, Plantago lanceolata and Lotus corniculatus). The lack of increase in habitat- and

food specialists in other groups (spiders, true bugs and carabid beetles) indicates that either

conditions for specialists did not improve (at least not more so than for habitat generalists)

or that specialists did not reach improved sites because of dispersal barriers. Our trait

analysis revealed some evidence, albeit weak, for the existence of such dispersal barriers.

The significant interaction between habitat affinity and dispersal ability for changes in

compositional variation among spiders (see Fig. 4a) is caused by the fact that poorly

dispersing habitat specialists occur in fewer sites than good dispersers and habitat gener-

alists. This indicates that habitat fragmentation limits the dispersal of these spider species.

For vascular plants, we found a trend towards interaction between habitat affinity and

dispersal ability with respect to changes in occupancy: characteristic species tended to

increase more if they had long-distance dispersal mechanisms, although this effect was not

significant (p = 0.06). For woodlice we found a strong correlation between occurrence

change and body size, which was used as a proxy for dispersal ability. Large bodied

species ([10 mm), like Armadillidium vulgare, Porcellio dilatatus, Porcellio scaber and

Trachelipus rathkii increased in occurrence, while small-bodied species such as Plat-

yarthrus hoffmannseggi and Trichoniscus pusillus declined. This could indicate that spe-

cies recovery was limited by habitat isolation and fragmentation. However, no hard

conclusions can be drawn from this relationship, as body size is equally related to other

responses, including drought or heat resistance (Calder 1984; Peters 1986). Small species

tend to be more vulnerable to drought (Kaspari 1993; Kærsgaard et al. 2004; Dias et al.

2012) and heat (Peters 1986) than larger species, presenting an alternative explanation for

the observed relationship. The lack of a coherent effect of dispersal ability across taxo-

nomic groups may be caused by the fact that the absolute dispersal ability of ‘good’ and

‘poor’ dispersers varies considerably between groups. True bugs classified as ‘good dis-

persers’ (i.e. species capable of active flight) are likely to reach much longer distances in a

single generation than ‘good dispersing’ plants, which was defined as those with a long
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distance dispersal strategy. Moreover, trait variation within some taxonomic groups may be

too small to have an effect.

Overall, the explanatory power of single traits in our study was generally low. This is

likely to be partly due to the crude trait categories we adopted, due to a lack of more

accurate autecological data for some of the studied taxonomic groups. However, there is

also a more fundamental reason for the lack of trait-environment responses. The adaptive

value of a specific trait is contingent upon a species’ body-plan and its other traits (Verberk

et al. 2013). This means that the vulnerability of a species to a specific environmental

factor depends on the effect of all its traits combined. More elaborate analyses, incorpo-

rating a wide range of traits and explicit trait interactions, e.g. through the use of life-

history strategies, are likely to generate better insight (van Noordwijk et al. 2012a; Verberk

et al. 2013; van Noordwijk 2014).

Conclusions and implications

In all, our results indicate that 17 years of conservation management in Dutch calcareous

grasslands has not led to the anticipated overall increase in local species richness across all

taxonomic groups. However, considering the ongoing biodiversity decline in agricultural

landscapes, our results do indicate moderate conservation success (lack of decline among

plants, ants, spiders and woodlice, increased richness of millipedes and true bugs and

increases in characteristic spiders and weevil food specialists). Local biodiversity con-

servation seems to have been limited in particular by species’ inability to recolonize

suitable habitat in this highly fragmented landscape. In addition, the management regime

seems to have been insufficient to create favorable habitat conditions for some charac-

teristic species, particularly carabid beetles and weevils. Intensive autumn management in

Dutch calcareous grasslands may cause particular obstacles for their larval stages, as was

previously demonstrated for ants (van Noordwijk et al. 2012a) and butterflies (van

Noordwijk et al. 2012b).

An encouraging result of our study is that local diversity shifts were generally paralleled

by shifts in regional diversity and compositional variation in the same direction. Imple-

mentation of relatively uniform conservation management at the regional scale, consisting

of intensive autumn grazing and/or mowing, did not lead to a uniform change in species

composition. This suggests that the management succeeded in maintaining or even

enhancing the unique character of each site, attracting different species to different sites.

Although this is certainly a positive result, it may in fact partially reflect the high level of

fragmentation of the study landscape. If species are only able to recolonize restored sites

over short distances, then regional introduction of uniform conservation management is

indeed unlikely to lead to biotic homogenization. In addition, the spider data in our study

demonstrate that successful management (in terms of increased occurrence of character-

istic species) does not always lead to increased compositional variation among sites.

Theoretically, successful conservation management can even contribute to biotic homog-

enization in a positive way, e.g. if it causes characteristic species to be present in all study

sites (recall Fig. 1). Therefore, biotic homogenization should not by definition be con-

sidered as a process that needs to be avoided and countered. Instead, providing a range of

environmental conditions to suit different species is paramount for safeguarding regional

biodiversity, irrespective of whether these conditions are present in the same or in separate

sites.

In line with earlier studies (Kruess and Tscharntke 2002; Devin et al. 2005; Oertli et al.

2005; Shaw et al. 2010), our results demonstrate that diversity shifts differ markedly
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among taxonomic groups. This demonstrates the need to adopt a wide taxonomic scope

when evaluating strategies to tackle diversity loss and the need to understand underlying

mechanisms. Although the explanatory power of our single trait analyses was generally

low, it did shed some light on the mechanisms underlying observed diversity shifts, par-

ticularly highlighting dispersal constraints. In addition, we found that holometabolous

taxonomic groups declined more than hemimetabolous arthropods. This intriguing

observation warrants further investigation.
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Kleijn D, Kohler F, Báldi A et al (2009) On the relationship between farmland biodiversity and land-use
intensity in Europe. Proc Biol Sci 276:903–909. doi:10.1098/rspb.2008.1509

Konvicka M, Benes J, Cizek O et al (2008) How too much care kills species: grassland reserves, agri-
environmental schemes and extinction of Colias myrmidone (Lepidoptera: Pieridae) from its former
stronghold. J Insect Conserv 12:519–525. doi:10.1007/s10841-007-9092-7

K}orösi Á, Batáry P, Orosz A et al (2012) Effects of grazing, vegetation structure and landscape complexity
on grassland leafhoppers (Hemiptera: Auchenorrhyncha) and true bugs (Hemiptera: Heteroptera) in
Hungary. Insect Conserv Divers 5:57–66. doi:10.1111/j.1752-4598.2011.00153.x

Krauss J, Bommarco R, Guardiola M et al (2010) Habitat fragmentation causes immediate and time-delayed
biodiversity loss at different trophic levels. Ecol Lett 13:597–605. doi:10.1111/j.1461-0248.2010.
01457.x

Kruess A, Tscharntke T (2002) Grazing intensity and the diversity of grasshoppers, butterflies, and trap-
nesting bees and wasps. Conserv Biol 16:1570–1580. doi:10.1046/j.1523-1739.2002.01334.x

Lambeets K, Vandegehuchte ML, Maelfait JP, Bonte D (2009) Integrating environmental conditions and
functional life-history traits for riparian arthropod conservation planning. Biol Conserv 142:625–637.
doi:10.1016/j.biocon.2008.11.015

McKinney M, Lockwood J (1999) Biotic homogenization: a few winners replacing many losers in the next
mass extinction. Trends Ecol Evol 14:450–453. doi:10.1016/S0169-5347(99)01679-1

McKinney ML, Lockwood JL (2001) Biotic homogenization: a sequential and selective process. In:
Lockwood JL, McKinney ML (eds) Biotic homogenization. Springer, Boston, pp 1–17

Millenium Ecosystem Assessment (2005) ecosystems and human well-being: biodiversity synthesis.
Washington, DC

Morris MG (2000) The effects of structure and its dynamics on the ecology and conservation of arthropods
in British grasslands. Biol Conserv 95:129–142

Mouillot D, Bellwood DR, Baraloto C et al (2013) Rare species support vulnerable functions in high-
diversity ecosystems. PLoS Biol 11:e1001569. doi:10.1371/journal.pbio.1001569
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