4,688 research outputs found

    An Improved Approximate Consensus Algorithm in the Presence of Mobile Faults

    Full text link
    This paper explores the problem of reaching approximate consensus in synchronous point-to-point networks, where each pair of nodes is able to communicate with each other directly and reliably. We consider the mobile Byzantine fault model proposed by Garay '94 -- in the model, an omniscient adversary can corrupt up to ff nodes in each round, and at the beginning of each round, faults may "move" in the system (i.e., different sets of nodes may become faulty in different rounds). Recent work by Bonomi et al. '16 proposed a simple iterative approximate consensus algorithm which requires at least 4f+14f+1 nodes. This paper proposes a novel technique of using "confession" (a mechanism to allow others to ignore past behavior) and a variant of reliable broadcast to improve the fault-tolerance level. In particular, we present an approximate consensus algorithm that requires only 7f/2+1\lceil 7f/2\rceil + 1 nodes, an f/2\lfloor f/2 \rfloor improvement over the state-of-the-art algorithms. Moreover, we also show that the proposed algorithm is optimal within a family of round-based algorithms

    Direct observation of a hydrophobic bond in loop-closure of a capped (-OCH2CH2-)n oligomer in water

    Full text link
    The small r variation of the probability density P(r) for end-to-end separations of a -CH2CH3 capped (-OCH2CH2-)n oligomer in water is computed to be closely similar to the CH4 ... CH4 potential of mean force under the same circumstances. Since the aqueous solution CH4 ... CH4 potential of mean force is the natural physical definition of a primitive hydrophobic bond, the present result identifies an experimentally accessible circumstance for direct observation of a hydrophobic bond which has not been observed previously because of the low solubility of CH4 in water. The physical picture is that the soluble chain molecule carries the capping groups into aqueous solution, and permits them to find one another with reasonable frequency. Comparison with the corresponding results without the solvent shows that hydration of the solute oxygen atoms swells the chain molecule globule. This supports the view that the chain molecule globule might have a secondary effect on the hydrophobic interaction which is of first interest here. The volume of the chain molecule globule is important for comparing the probabilities with and without solvent because it characterizes the local concentration of capping groups. Study of other capping groups to enable X-ray and neutron diffraction measurements of P(r) is discussed.Comment: 4 pages, 3 figure

    Modelling an abrasive wear experiment by the boundary element method

    No full text
    This Note presents a computational technique for simulating friction-induced wear in a tribology experiment on a plan/plan, ring-on-disc contact configuration. The boundary element method results in modest computing times and facilitates the mesh modifications used for tracking the wear profile evolution. A typical wear simulation result is presented and discussed

    A two-state kinetic model for the unfolding of single molecules by mechanical force

    Get PDF
    We investigate the work dissipated during the irreversible unfolding of single molecules by mechanical force, using the simplest model necessary to represent experimental data. The model consists of two levels (folded and unfolded states) separated by an intermediate barrier. We compute the probability distribution for the dissipated work and give analytical expressions for the average and variance of the distribution. To first order, the amount of dissipated work is directly proportional to the rate of application of force (the loading rate), and to the relaxation time of the molecule. The model yields estimates for parameters that characterize the unfolding kinetics under force in agreement with those obtained in recent experimental results (Liphardt, J., et al. (2002) {\em Science}, {\bf 296} 1832-1835). We obtain a general equation for the minimum number of repeated experiments needed to obtain an equilibrium free energy, to within kBTk_BT, from non-equilibrium experiments using the Jarzynski formula. The number of irreversible experiments grows exponentially with the ratio of the average dissipated work, \bar{\Wdis}, to kBTk_BT.}Comment: PDF file, 5 page

    Equation of motion and subsonic-transonic transitions of rectilinear edge dislocations: A collective-variable approach

    Full text link
    A theoretical framework is proposed to derive a dynamic equation motion for rectilinear dislocations within isotropic continuum elastodynamics. The theory relies on a recent dynamic extension of the Peierls-Nabarro equation, so as to account for core-width generalized stacking-fault energy effects. The degrees of freedom of the solution of the latter equation are reduced by means of the collective-variable method, well known in soliton theory, which we reformulate in a way suitable to the problem at hand. Through these means, two coupled governing equations for the dislocation position and core width are obtained, which are combined into one single complex-valued equation of motion, of compact form. The latter equation embodies the history dependence of dislocation inertia. It is employed to investigate the motion of an edge dislocation under uniform time-dependent loading, with focus on the subsonic/transonic transition. Except in the steady-state supersonic range of velocities---which the equation does not address---our results are in good agreement with atomistic simulations on tungsten. In particular, we provide an explanation for the transition, showing that it is governed by a loading-dependent dynamic critical stress. The transition has the character of a delayed bifurcation. Moreover, various quantitative predictions are made, that could be tested in atomistic simulations. Overall, this work demonstrates the crucial role played by core-width variations in dynamic dislocation motion.Comment: v1: 11 pages, 4 figures. v2: title changed, extensive rewriting, and new material added; 19 pages, 12 figures (content as published

    Pseudoscalar and vector mesons as q\bar{q} bound states

    Full text link
    Two-body bound states such as mesons are described by solutions of the Bethe-Salpeter equation. We discuss recent results for the pseudoscalar and vector meson masses and leptonic decay constants, ranging from pions up to c\bar{c} bound states. Our results are in good agreement with data. Essential in these calculation is a momentum-dependent quark mass function, which evolves from a constituent-quark mass in the infrared region to a current-quark mass in the perturbative region. In addition to the mass spectrum, we review the electromagnetic form factors of the light mesons. Electromagnetic current conservation is manifest and the influence of intermediate vector mesons is incorporated self-consistently. The results for the pion form factor are in excellent agreement with experiment.Comment: 8 pages, 6 .eps figures, contribution to the proceedings of the first meeting of the APS Topical Group on Hadron Physics, Fermilab, Oct. 200

    Infinite Volume and Continuum Limits of the Landau-Gauge Gluon Propagator

    Get PDF
    We extend a previous improved action study of the Landau gauge gluon propagator, by using a variety of lattices with spacings from a=0.17a = 0.17 to 0.41 fm, to more fully explore finite volume and discretization effects. We also extend a previously used technique for minimizing lattice artifacts, the appropriate choice of momentum variable or ``kinematic correction'', by considering it more generally as a ``tree-level correction''. We demonstrate that by using tree-level correction, determined by the tree-level behavior of the action being considered, it is possible to obtain scaling behavior over a very wide range of momenta and lattice spacings. This makes it possible to explore the infinite volume and continuum limits of the Landau-gauge gluon propagator.Comment: 24 pages RevTex, 18 figures; Responses to referee comments, minor change

    A Close Look at Star Formation around Active Galactic Nuclei

    Full text link
    We analyse star formation in the nuclei of 9 Seyfert galaxies at spatial resolutions down to 0.085arcsec, corresponding to length scales of less than 10pc in some objects. Our data were taken mostly with the near infrared adaptive optics integral field spectrograph SINFONI. The stellar light profiles typically have size scales of a few tens of parsecs. In two cases there is unambiguous kinematic evidence for stellar disks on these scales. In the nuclear regions there appear to have been recent - but no longer active - starbursts in the last 10-300Myr. The stellar luminosity is less than a few percent of the AGN in the central 10pc, whereas on kiloparsec scales the luminosities are comparable. The surface stellar luminosity density follows a similar trend in all the objects, increasing steadily at smaller radii up to 10^{13}L_sun/kpc^2 in the central few parsecs, where the mass surface density exceeds 10^4M_sun/pc^2. The intense starbursts were probably Eddington limited and hence inevitably short-lived, implying that the starbursts occur in multiple short bursts. The data hint at a delay of 50--100Myr between the onset of star formation and subsequent fuelling of the black hole. We discuss whether this may be a consequence of the role that stellar ejecta could play in fuelling the black hole. While a significant mass is ejected by OB winds and supernovae, their high velocity means that very little of it can be accreted. On the other hand winds from AGB stars ultimately dominate the total mass loss, and they can also be accreted very efficiently because of their slow speeds.Comment: 51 pages, including 27 figures; accepted by ApJ (paper reorganised, but results & conclusions the same

    Nonperturbative improvement and tree-level correction of the quark propagator

    Get PDF
    We extend an earlier study of the Landau gauge quark propagator in quenched QCD where we used two forms of the O(a)-improved propagator with the Sheikholeslami-Wohlert quark action. In the present study we use the nonperturbative value for the clover coefficient c_sw and mean-field improvement coefficients in our improved quark propagators. We compare this to our earlier results which used the mean-field c_sw and tree-level improvement coefficients for the propagator. We also compare three different implementations of tree-level correction: additive, multiplicative, and hybrid. We show that the hybrid approach is the most robust and reliable and can successfully deal even with strong ultraviolet behavior and zero-crossing of the lattice tree-level expression. We find good agreement between our improved quark propagators when using the appropriate nonperturbative improvement coefficients and hybrid tree-level correction. We also present a simple extrapolation of the quark mass function to the chiral limit.Comment: 12 pages, 18 figures, RevTeX4. Some clarifications and corrections. Final version, to appear in Phys.Rev.

    Desenvolvimento de modelos de regressão como contribuição para a análise de risco de resíduos de pesticidas em maçã.

    Get PDF
    O Plano Nacional de Controle de Resíduos e Contaminantes (PNCRC) do Ministério da Agricultura Pecuária e Abastecimento (MAPA) é um programa federal de fiscalização de alimentos que visa quantificar resíduos químicos potencialmente nocivos à saúde do consumidor. Os dados coletados pelo PNCRC provêm de uma amostragem homogênea e aleatória, em âmbito nacional, de diversos produtos de origem vegetal e animal, seguida de análises em laboratórios oficiais e credenciados pelo MAPA. Este trabalho objetiva o tratamento dos dados gerados pelo PNCRC, coletados no período de 2008 a 2011, relativos à análise de risco de resíduos de pesticidas em maçã, visando evidenciar correlações espaço-temporais relevantes quanto à concentração de diferentes resíduos químicos.CIIC 2014. Nº 14604
    corecore