713 research outputs found
Shoaling with fish: using miniature robotic agents to close the interaction loop with groups of zebrafish Danio rerio
Robotic animals are nowadays developed for various types of research, such as bio-inspired robotics, biomimetics and animal behavior studies. The miniaturization of technologies and the increase in performance of embedded systems allowed engineers to develop more powerful, sophisticated and miniature devices. The case of robotic fish is a typical example of such challenging design: the fish locomotion and body movements are difficult to reproduce and the device has to move autonomously underwater. More specifically, in the case of collective animal behavior research, the robotic device has to interact with animals by generating and exploiting signals relevant for social behavior. Once perceived by the animal society as conspecific, these robots can become powerful tools to study the animal behaviors, as they can at the same time monitor the changes in behavior and influence the collective choices of the animal society. In this work, we present novel robotized tools that can integrate shoals of fish in order to study their collective behaviors. This robotic platform is composed of two subsystems: a miniature wheeled mobile robot that can achieve dynamic movements and multi-robot long-duration experiments, and a robotic fish lure that is able to beat its tail to generate fish-like body movements. The two subsystems are coupled with magnets which allows the wheeled mobile robot to steer the robotic fish lure so that it reaches very high speeds and accelerations while achieving shoaling. An experimental setup to conduct studies on mixed societies of artificial and living fish was designed to facilitate the experiments for biologists. A software framework was also implemented to control the robots in a closed-loop using data extracted from visual tracking that retrieved the position of the robots and the fish. We selected the zebrafish Danio rerio as a model to perform experiments to qualify our system. We used the current state of the art on the zebrafish social behavior to define the specifications of the robots, and we performed stimuli analysis to improve their developments. Bio-inspired controllers were designed based on data extracted from experiments with zebrafish for the robots to mimic the zebrafish locomotion underwater. Experiments involving a robot with a shoal of fish in a constrained environment showed that the locomotion of the robot was one of the main factor to affect the collective behavior of zebrafish. We also shown that the body movements and the biomimetic appearance of the lure could increase its acceptance by fish. Finally, an experiment involving a mixed society of fish and robots qualified the robotic system to be integrated among a zebrafish shoal and to be able to influence the collective decisions of the fish. These results are very promising for the field of fish-robot interaction studies, as we showed the effect of the robots in long-duration experiments and repetitively, with the same order of response from the animals
Deep into oceanic N<sub>2</sub> fixation
International audienc
Follow the dummy: measuring the influence of a biomimetic robotic fish-lure on the collective decisions of a zebrafish shoal inside a circular corridor
Robotic agents that are accepted by animals as conspecifics are very powerful tools in behavioral biology because of the ways they help in studying social interactions in gregarious animals. In recent years, we have developed a biomimetic robotic fish lure for the purpose of studying the behavior of the zebrafish Danio rerio. In this paper, we present a series of experiments that were designed to assess the impact of some features of the lure regarding its acceptance among the fish. We developed an experimental setup composed of a circular corridor and a motorized rotating system able to steer the lure inside the corridor with a tunable linear speed. We used the fish swimming direction and distance between the fish and the lure as a metric to characterize the level of acceptance of the lure, depending on various parameters. The methodology presented and the experimental results are promising for the field of animalârobot interaction studies
Chasing after non-cyanobacterial nitrogen fixation in marine pelagic environments
Traditionally, cyanobacterial activity in oceanic photic layers was considered responsible for the marine pelagic dinitrogen (N2) fixation. Other potentially N2-fixing bacteria and archaea have also been detected in the pelagic water column, however, the activity and importance of these non-cyanobacterial diazotrophs (NCDs) remain poorly constrained. In this perspective we summarize the N2 fixation rates from recently published studies on photic and aphotic layers that have been attributed to NCD activity via parallel molecular measurements, and discuss the status, challenges, and data gaps in estimating non-cyanobacterial N2 fixation NCNF in the ocean. Rates attributed to NCNF have generally been near the detection limit thus far (<1 nmol N Lâ1 dâ1). Yet, if considering the large volume of the dark ocean, even low rates of NCNF could make a significant contribution to the new nitrogen input to the ocean. The synthesis here shows that nifH transcription data for NCDs have been reported in only a few studies where N2 fixation rates were detected in the absence of diazotrophic cyanobacteria. In addition, high apparent diversity and regional variability in the NCDs complicate investigations of these communities. Future studies should focus on further investigating impacts of environmental drivers including oxygen, dissolved organic matter, and dissolved inorganic nitrogen on NCNF. Describing the ecology of NCDs and accurately measuring NCNF rates, are critical for a future evaluation of the contribution of NCNF to the marine nitrogen budget
Dependence of the Chiral Symmetry Restoration Transition on the Quark Self-Energy Kernel
The dependence of the dressed quark propagator on the quark chemical
potential is investigated in various models based on the Dyson-Schwinger
equations. We find that the critical chemical potential of the chiral symmetry
restoration transition is strongly dependent on the nature of the interaction
kernel in the infrared region.Comment: 10 pages, 3 figures, minor change to introduction, accepted for
publication in Phys. Lett.
Diazotroph community succession during the VAHINE mesocosm experiment (New Caledonia lagoon)
The VAHINE mesocosm experiment, conducted in the low-nutrient low-chlorophyll waters of the Noumea lagoon (coastal New Caledonia) was designed to trace the incorporation of nitrogen (N) fixed by diazotrophs into the food web, using large volume (50 m(3)) mesocosms. This experiment provided a unique opportunity to study the succession of different N-2-fixing microorganisms (diazotrophs) and calculate in situ net growth and mortality rates in response to fertilization with dissolved inorganic phosphate (DIP) over a 23-day period, using quantitative polymerase chain reaction (qPCR) assays targeting widely distributed marine diazotroph lineages. Inside the mesocosms, the most abundant diazotroph was the heterocyst-forming Richelia associated with Rhizosolenia (Het-1) in the first half of the experiment, while unicellular cyanobacterial Group C (UCYN-C) became abundant during the second half of the experiment. Decreasing DIP concentrations following the fertilization event and increasing temperatures were significantly correlated with increasing abundances of UCYN-C. Maximum net growth rates for UCYN-C were calculated to range between 1.23 +/- 0.07 and 2.16 +/- 0.07 d(-1) in the mesocosms, which are among the highest growth rates reported for diazotrophs. Outside the mesocosms in the New Caledonia lagoon, UCYN-C abundances remained low, despite increasing temperatures, suggesting that the microbial community response to the DIP fertilization created conditions favorable for UCYN-C growth inside the mesocosms. Diazotroph community composition analysis using PCR targeting a component of the nitrogenase gene (nifH) verified that diazotrophs targeted in qPCR assays were collectively among the major lineages in the lagoon and mesocosm samples, with the exception of Crocosphaera-like phylotypes, where sequence types not typically seen in the oligotrophic ocean grew in the mesocosms. Maximum net growth and mortality rates for nine diazotroph phylotypes throughout the 23-day experiment were variable between mesocosms, and repeated fluctuations between periods of net growth and mortality were commonly observed. The field population of diazotrophs in the New Caledonian lagoon waters appeared to be dominated by Het-1 over the course of the study period. However, results from both qPCR and PCR analysis indicated a diverse field population of diazotrophs was present in the lagoon at the time of sampling. Two ecotypes of the Braarudosphaera bigelowii symbiont unicellular group A (UCYN-A) were present simultaneously in the lagoon, with the recently described B. bigelowii/UCYN-A2 association present at higher abundances than the B. bigelowii/UCYN-A1 association
Closed-loop interactions between a shoal of zebrafish and a group of robotic fish in a circular corridor
Collective behavior based on self-organization has been observed in populations of animals from insects to vertebrates. These findings have motivated engineers to investigate approaches to control autonomous multi-robot systems able to reproduce collective animal behaviors, and even to collectively interact with groups of animals. In this article, we show collective decision making by a group of autonomous robots and a group of zebrafish, leading to a shared decision about swimming direction. The robots can also modulate the collective decision-making process in biased and non-biased experimental setups. These results demonstrate the possibility of creating mixed societies of vertebrates and robots in order to study or control animal behavior
Infiltrating the Zebrafish Swarm: Design, Implementation and Experimental Tests of a Miniature Robotic Fish Lure for Fish-Robot Interaction Studies
Robotic fish are nowadays developed for various types of research, such as bio-inspired robotics, biomimetics and animal behavior studies. In the context of our research on the social interactions of the zebrafish Danio Rerio, we developed a miniature robotic fish lure for direct underwater interaction with the living fish. This remotely controlled and waterproof device has a total length of 7.5 cm with the same size ratio as zebrafish and is able to beat its tail with different frequencies and amplitudes, while following the group of living animals using a mobile robot moving outside water that is coupled with the robotic lure using magnets. The robotic lure is also equipped with an easily rechargeable battery and can be used autonomously underwater for experiments of up to one hour. We performed experiments with the robot moving inside an aquarium with living fish in order to analyze its impact on the zebrafish behavior. We found that the beating rate of the tail increased the attractiveness of the lure among the zebrafish shoal. We also demonstrated that the lure could influence a collective decision of the zebrafish shoal, the swimming direction, when moving with a constant linear speed inside a circular corridor. This new robotic fish design and the experimental results are promising for the field of fish-robot interaction
Design Methods for Miniature Underwater Soft Robots
A robotic fish accepted by animals as conspecifics is a very powerful tool in behavioral biology. To obtain the acceptance of the device towards the animals, it should generate some visual stimuli that can be perceived by a living fish as attractive signals. In this paper we introduce a novel design of a robotic fish lure based on a Rigid-Flex Printed Circuit Board (PCB) for experiments on the fish collective behavior. The 3D scan of a zebrafish Danio Rerio, a model animal for fish behavior studies, was used to mimick the main visual features of the zebrafish on the design. The robot can generate different stimuli thanks to its actuated caudal peduncle and two Light- Emitting Diodes (LEDs) placed near its eyes. The prototype has a total length of 63 mm and is only 1.5 times bigger than a zebrafish. The final prototype is waterproof and functional and thus satisfies the necessary conditions for the next steps that will be interaction experiments between the device and living zebrafish
- âŠ