10 research outputs found

    Investigating the mechanism of renal cystogenesis in tuberous sclerosis and polycystic kidney disease

    Get PDF
    Tuberous sclerosis (TSC) is an autosomal dominant disorder caused by germline mutations in either TSC1 or TSC2 and characterised by the development of benign hamartomatous growths in multiple organs and tissues. Clinical trials are underway for the treatment of TSC-associated tumours using mammalian target of rapamycin (mTOR) inhibitors. Here, we show that many of the earliest renal lesions from Tsc1+/ and Tsc2+/ mice do not exhibit mTOR activation, suggesting that pharmacological targeting of an alternative pathway may be necessary to prevent tumour formation. Patients with TSC often develop renal cysts and those with inherited co- deletions of the autosomal dominant polycystic kidney disease (ADPKD) 1 gene (PKD1) develop severe, early onset, polycystic kidneys. Using mouse models, we crossed Tsc1+, and Tsc2+I mice with Pkd1+/ mice to generate double heterozygotes. We found that Tsc1+lPkd1+, and Tsc2+l Pkd1+, mice had significantly more renal lesions than their corresponding single heterozygote littermates indicating a genetic interaction between Tsd and Tsc2 with Pkd1. In agreement with our findings from Tsc1+/ and Tsc2+/ mice, we found that a large proportion of cysts from Tsc1+l Pkd1+, and Tsc2+l Pkd1+, mice failed to stain for pS6, suggesting that initiation of renal cystogenesis in these animals may occur independently of mTOR activation. We analysed primary cilia in phenotypically normal renal tubule epithelial cells by scanning electron microscopy (SEM) and found that those from Tsc1+, and Tsc2+I mice were significantly shorter than those from wild-type littermates (2.122pm and 2.016pm vs. 2.233pm, respectively, P<0.001). Primary cilia from epithelial cells lining renal cysts of Tsc1+' and Tsc2+I' mice were consistently longer (5.157pm and 5.091pm respectively). Interestingly, we found that Pkd1- deficiency coupled with either Tsd or 7sc2-deficiency altered the length of the primary cilia from both normal renal tubule cells (restored to 'wild-type' length) and epithelial cells lining cysts (Tsc1+tPkd1+, Mean 3.38pm and Tsc2+,Pkd1+l Mean 3.09pm). These novel data demonstrate that the Tsc and Pkd1 gene products help regulate primary cilia length which may prevent renal cystogenesis. Consistent with the observation that primary cilia modulate the planar cell polarity (POP) pathway, we found that many dividing pre-cystic renal tubule epithelial cells from Tsc1+/ , Tsc2+/ and Pkd1+/ mice were highly misorientated along the tubule axis. This could potentially lead to tubule dilation and subsequent cyst formation. We therefore propose that defects in cell polarity underlie both TSC and ADPKD-associated renal cystic disease and targeting of this pathway may be of key therapeutic benefit.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    AMPA/kainate glutamate receptor antagonists prevent posttraumatic osteoarthritis

    Get PDF
    Musculoskeletal disorders represent the 3rd greatest burden on health in the developed world. Osteoarthritis is the single greatest cause of chronic pain, has no cure, and affects 8.5 and 27 million in the UK and US respectively. Osteoarthritis commonly occurs after joint injury, particularly affecting younger patients. Painful joints are often treated with injections of steroid or hyaluronic acid (HA), but treatments to prevent subsequent joint degeneration remain elusive. In animals, joint injury increases glutamate release into the joint, acting on nerves to cause pain, and joint tissues to cause inflammation and degeneration. This study investigated synovial fluid glutamate concentrations and glutamate receptor (GluR) expression in injured human joints and compared efficacy of GluR antagonists with current treatments in a mouse model of injury-induced osteoarthritis (ACL rupture). GluRs were expressed in ligament and meniscus after knee injury and synovial fluid glutamate concentrations ranged from 19–129 µM. Intra-articular injection of NBQX (GluR antagonist), administered at the time of injury, substantially reduced swelling and degeneration in the mouse ACL rupture model. HA had no effect and depo-medrone reduced swelling for 1 day, but increased degeneration by 50%. Intra-articular administration of NBQX was both symptom and disease modifying to a greater extent than current treatments. There is an opportunity for repurposing related drugs, developed for CNS disorders, with proven safety in man, to prevent injury-induced osteoarthritis. This could quickly reduce the substantial burden associated with osteoarthritis

    AMPA/kainate glutamate receptors contribute to inflammation, degeneration and pain related behaviour in inflammatory stages of arthritis

    Get PDF
    Objectives Synovial fluid glutamate concentrations increase in arthritis. Activation of kainate (KA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors (GluRs) increase interleukin-6 (IL-6) release and cause arthritic pain, respectively. We hypothesised that AMPA and KA GluRs are expressed in human arthritis, and that intra-articular NBQX (AMPA/KA GluR antagonist) prevents pain and pathology in antigen-induced arthritis (AIA). Methods GluR immunohistochemistry was related to synovial inflammation and degradation in osteoarthritis (OA) and rheumatoid arthritis (RA). A single intra-articular NBQX injection was given at induction, and knee swelling and gait of AIA and AIA+NBQX rats compared over 21 days, before imaging, RT-qPCR, histology and immunohistochemistry of joints. Effects of NBQX on human primary osteoblast (HOB) activity were determined. Results AMPAR2 and KA1 immunolocalised to remodelling bone, cartilage and synovial cells in human OA and RA, and rat AIA. All arthritic tissues showed degradation and synovial inflammation. NBQX reduced GluR abundance, knee swelling (p<0.001, days 1–21), gait abnormalities (days 1–2), end-stage joint destruction (p<0.001), synovial inflammation (p<0.001), and messenger RNA expression of meniscal IL-6 (p<0.05) and whole joint cathepsin K (p<0.01). X-ray and MRI revealed fewer cartilage and bone erosions, and less inflammation after NBQX treatment. NBQX reduced HOB number and prevented mineralisation. Conclusions AMPA/KA GluRs are expressed in human OA and RA, and in AIA, where a single intra-articular injection of NBQX reduced swelling by 33%, and inflammation and degeneration scores by 34% and 27%, respectively, exceeding the efficacy of approved drugs in the same model. AMPA/KA GluR antagonists represent a potential treatment for arthritis

    Inflammatory and degenerative phases resulting from anterior cruciate rupture in a non-invasive murine model of post-traumatic osteoarthritis

    Get PDF
    Joint injury is the predominant risk factor for post-traumatic osteoarthritis development (PTOA). Several non-invasive mouse models mimicking human PTOA investigate molecular mechanisms of disease development; none have characterised the inflammatory response to this acute traumatic injury. Our aim was to characterise the early inflammatory phase and later degenerative component in our in vivo non-invasive murine model of PTOA induced by anterior cruciate ligament (ACL) rupture. Right knees of 12-week-old C57Bl6 mice were placed in flexion at a 30° offset position and subjected to a single compressive load (12N, 1.4mm/s) to induce ACL rupture with no obvious damage to surrounding tissues. Tissue was harvested 4 hours post-injury and on days 3, 14 and 21; contralateral left knees served as controls. Histological, immunohistochemical and gene analyses were performed to evaluate inflammatory and degenerative changes. Immunohistochemistry revealed time-dependent expression of mature (F4/80 positive) and inflammatory (CD11b positive) macrophage populations within the sub-synovial infiltrate, developing osteophytes and inflammation surrounding the ACL in response to injury. Up-regulation of genes encoding acute pro-inflammatory markers, inducible nitric oxide synthase, interleukin-6 and interleukin-17, and the matrix degrading enzymes, ADAMTS-4 and MMP3 was detected in femoral cartilage, concomitant with extensive cartilage damage and bone remodelling over 21-days post-injury. Our non-invasive model describes pathologically distinct phases of the disease, increasing our understanding of inflammatory episodes, the tissues/cells producing inflammatory mediators and the early molecular changes in the joint, thereby defining the early phenotype of PTOA. This knowledge will guide appropriate interventions to delay or arrest disease progression following joint injury

    Deletion of P58<sup>IPK</sup>, the cellular inhibitor of the protein kinases PKR and PERK, causes bone changes and joint degeneration in mice

    Get PDF
    Objective: Protein kinase-like endoplasmic reticulum kinase (PERK) and protein kinase R (PKR) are implicated in endoplasmic reticulum stress-induced arthritis and pro-inflammatory cytokine-mediated cartilage degradation in vitro, respectively. We determined whether knockout of the cellular inhibitor of PERK and PKR, P58IPK causes joint degeneration in vivo and whether these molecules are activated in human osteoarthritis (OA). Materials and Methods: Sections of knee joints from P58IPK-null and wild-type mice aged 12–13 and 23–25 months were stained with toluidine blue and scored for degeneration using the osteoarthritis research society international (OARSI) system. Bone changes were assessed by radiology and high-resolution micro-computed tomography of hind limbs. Sections from the medial tibial plateaus of two human knees, removed in total knee replacement surgery for OA, were immunolabelled for phosphorylated PERK and PKR and P58IPK. Results: Knockout mice exhibited narrower tibiae (p = 0.0031) and smaller epiphyses in tibiae (p = 0.0004) and femora (p = 0.0214). Older knockout mice had reduced total volume inside the femoral periosteal envelope (p = 0.023), reduced tibial (p = 0.03), and femoral (p = 0.0012) bone volumes (BV) and reduced femoral BV fraction (p = 0.025). Compared with wild-types, younger P58IPK-null mice had increased OARSI scores in medial femoral condyles (p = 0.035). Thirty four percent of null mice displayed severe joint degeneration with complete articular cartilage loss from the medial compartment and heterotopic chondro-osseous tissue in the medial joint capsule. Phosphorylated PERK and PKR were localized throughout human osteoarthritic tibial plateaus but, in particular, in areas exhibiting the most degeneration. There was limited expression of P58IPK. Conclusion: This study is the first to reveal a critical role for P58IPK in maintaining joint integrity in vivo, implicating the PKR and PERK stress signaling pathways in bony changes underlying the pathogenesis of joint degeneration

    Enhanced bacterial cancer therapy delivering therapeutic RNA interference of c-Myc

    Get PDF
    Bacterial cancer therapy was first trialled in patients at the end of the nineteenth century. More recently, tumour-targeting bacteria have been harnessed to deliver plasmid-expressed therapeutic interfering RNA to a range of solid tumours. A major limitation to clinical translation of this is the short-term nature of RNA interference in vivo due to plasmid instability. To overcome this, we sought to develop tumour-targeting attenuated bacteria that stably express shRNA by virtue of integration of an expression cassette within the bacterial chromosome and demonstrate therapeutic efficacy in vitro and in vivo. Results The attenuated tumour targeting Salmonella typhimurium SL7207 strain was modified to carry chromosomally integrated shRNA expression cassettes at the xylA locus. The colorectal cancer cell lines SW480, HCT116 and breast cancer cell line MCF7 were used to demonstrate the ability of these modified strains to perform intracellular infection and deliver effective RNA and protein knockdown of the target gene c-Myc. In vivo therapeutic efficacy was demonstrated using the Lgr5creERT2Apcflx/flx and BlgCreBrca2flx/flp53flx/flx orthotopic immunocompetent mouse models of colorectal and breast cancer, respectively. In vitro co-cultures of breast and colorectal cancer cell lines with modified SL7207 demonstrated a significant 50–95% (P < 0.01) reduction in RNA and protein expression with SL7207/c-Myc targeted strains. In vivo, following establishment of tumour tissue, a single intra-peritoneal administration of 1 × 106 CFU of SL7207/c-Myc was sufficient to permit tumour colonisation and significantly extend survival with no overt toxicity in control animals. Conclusions In summary we have demonstrated that tumour tropic bacteria can be modified to safely deliver therapeutic levels of gene knockdown. This technology has the potential to specifically target primary and secondary solid tumours with personalised therapeutic payloads, providing new multi-cancer detection and treatment options with minimal off-target effects. Further understanding of the tropism mechanisms and impact on host immunity and microbiome is required to progress to clinical translation

    AMPA/kainate glutamate receptors contribute to inflammation, degeneration and pain related behaviour in inflammatory stages of arthritis

    No full text
    Objectives Synovial fluid glutamate concentrations increase in arthritis. Activation of kainate (KA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors (GluRs) increase interleukin-6 (IL-6) release and cause arthritic pain, respectively. We hypothesised that AMPA and KA GluRs are expressed in human arthritis, and that intra-articular NBQX (AMPA/KA GluR antagonist) prevents pain and pathology in antigen-induced arthritis (AIA). Methods GluR immunohistochemistry was related to synovial inflammation and degradation in osteoarthritis (OA) and rheumatoid arthritis (RA). A single intra-articular NBQX injection was given at induction, and knee swelling and gait of AIA and AIA+NBQX rats compared over 21 days, before imaging, RT-qPCR, histology and immunohistochemistry of joints. Effects of NBQX on human primary osteoblast (HOB) activity were determined. Results AMPAR2 and KA1 immunolocalised to remodelling bone, cartilage and synovial cells in human OA and RA, and rat AIA. All arthritic tissues showed degradation and synovial inflammation. NBQX reduced GluR abundance, knee swelling (p<0.001, days 1–21), gait abnormalities (days 1–2), end-stage joint destruction (p<0.001), synovial inflammation (p<0.001), and messenger RNA expression of meniscal IL-6 (p<0.05) and whole joint cathepsin K (p<0.01). X-ray and MRI revealed fewer cartilage and bone erosions, and less inflammation after NBQX treatment. NBQX reduced HOB number and prevented mineralisation. Conclusions AMPA/KA GluRs are expressed in human OA and RA, and in AIA, where a single intra-articular injection of NBQX reduced swelling by 33%, and inflammation and degeneration scores by 34% and 27%, respectively, exceeding the efficacy of approved drugs in the same model. AMPA/KA GluR antagonists represent a potential treatment for arthritis
    corecore