5 research outputs found

    Utilisation de nanoparticules magnétiques pour perturber la localisation spatiotemporelle de protéines de signalisation

    Get PDF
    An increasing number of studies highlight the importance of signaling localization. We developed methods to perturb this localization using magnetic nanoparticles. Proteins of interest are grafted on magnetic nanoparticles, allowing to magnetically localize them. We first propose a new method to engineer directly a spatial gradient of signaling protein concentration within in cell extract droplets using super-paramagnetic nanoparticles. We observed a link between a spatial asymmetry in biochemical cues and microtubules aster positional information. Our assay provides a bottom-up approach to examine the minimum ingredients generating polarization and symmetry breaking within cells. We then examined the possibility to magnetically perturb endosomes position in HeLa cell. We found the experimental conditions to achieve this goal. Finally, we used directly cytoskeleton elements as actin filament to trigger asymmetrically confined signaling proteins and trigger microtubule assembly, in cell extract droplets. More generally, these results show how symmetry breaking within cells can be induced and studied using magnetic nanoparticles and biophysical tools.De plus en plus d’études soulignent l’importance de la localisation intracellulaire des voies de signalisation. Nous avons dĂ©veloppĂ© des mĂ©thodes permettant de perturber cette localisation Ă  l’aide de nanoparticules magnĂ©tiques. Ces derniĂšres sont fonctionnalisĂ©es avec les protĂ©ines d’intĂ©rĂȘts et deviennent ainsi un vecteur permettant de contrĂŽler la localisation de la signalisation. Nous avons tout d’abord appliquĂ© cette mĂ©thode dans un systĂšme modĂšle, des gouttes d’extrait cellulaire de XĂ©nope, dans lesquelles nous avons crĂ©Ă© artificiellement un gradient de protĂ©ines de signalisation Ă  l’aide de nanoparticules magnĂ©tiques. Nous avons mis en Ă©vidence l’influence d’une asymĂ©trie biochimique sur la localisation d’asters de microtubules. Dans un deuxiĂšme temps nous avons examinĂ© la possibilitĂ© d’appliquer cette mĂ©thode dans des cellules HeLa adhĂ©rentes, pour perturber la localisation d’endosomes de signalisation rendus magnĂ©tiques. Nous avons cherchĂ© Ă  optimiser les conditions expĂ©rimentales nĂ©cessaires pour contrĂŽler la position d’endosomes de signalisation magnĂ©tiques Enfin, un troisiĂšme projet dont les rĂ©sultats prĂ©liminaires sont prĂ©sentĂ©s dans cette thĂšse, a consistĂ© Ă  utiliser un actuateur, non plus magnĂ©tique, mais biologique pour confiner une cascade de signalisation. Plus prĂ©cisĂ©ment la contraction d’un rĂ©seau d’actine confinĂ© dans des gouttes d’extrait cellulaire est utilisĂ©e pour localiser des protĂ©ines de signalisation. Ces rĂ©sultats dĂ©montrent l’intĂ©rĂȘt de nanoparticules magnĂ©tiques pour induire et Ă©tudier des phĂ©nomĂšnes de brisures de symĂ©tries dans des environnements biologique

    Use of magnetic nanoparticles to pertub the spatiotemporal localization of signaling proteins

    No full text
    De plus en plus d’études soulignent l’importance de la localisation intracellulaire des voies de signalisation. Nous avons dĂ©veloppĂ© des mĂ©thodes permettant de perturber cette localisation Ă  l’aide de nanoparticules magnĂ©tiques. Ces derniĂšres sont fonctionnalisĂ©es avec les protĂ©ines d’intĂ©rĂȘts et deviennent ainsi un vecteur permettant de contrĂŽler la localisation de la signalisation. Nous avons tout d’abord appliquĂ© cette mĂ©thode dans un systĂšme modĂšle, des gouttes d’extrait cellulaire de XĂ©nope, dans lesquelles nous avons crĂ©Ă© artificiellement un gradient de protĂ©ines de signalisation Ă  l’aide de nanoparticules magnĂ©tiques. Nous avons mis en Ă©vidence l’influence d’une asymĂ©trie biochimique sur la localisation d’asters de microtubules. Dans un deuxiĂšme temps nous avons examinĂ© la possibilitĂ© d’appliquer cette mĂ©thode dans des cellules HeLa adhĂ©rentes, pour perturber la localisation d’endosomes de signalisation rendus magnĂ©tiques. Nous avons cherchĂ© Ă  optimiser les conditions expĂ©rimentales nĂ©cessaires pour contrĂŽler la position d’endosomes de signalisation magnĂ©tiques Enfin, un troisiĂšme projet dont les rĂ©sultats prĂ©liminaires sont prĂ©sentĂ©s dans cette thĂšse, a consistĂ© Ă  utiliser un actuateur, non plus magnĂ©tique, mais biologique pour confiner une cascade de signalisation. Plus prĂ©cisĂ©ment la contraction d’un rĂ©seau d’actine confinĂ© dans des gouttes d’extrait cellulaire est utilisĂ©e pour localiser des protĂ©ines de signalisation. Ces rĂ©sultats dĂ©montrent l’intĂ©rĂȘt de nanoparticules magnĂ©tiques pour induire et Ă©tudier des phĂ©nomĂšnes de brisures de symĂ©tries dans des environnements biologiquesAn increasing number of studies highlight the importance of signaling localization. We developed methods to perturb this localization using magnetic nanoparticles. Proteins of interest are grafted on magnetic nanoparticles, allowing to magnetically localize them. We first propose a new method to engineer directly a spatial gradient of signaling protein concentration within in cell extract droplets using super-paramagnetic nanoparticles. We observed a link between a spatial asymmetry in biochemical cues and microtubules aster positional information. Our assay provides a bottom-up approach to examine the minimum ingredients generating polarization and symmetry breaking within cells. We then examined the possibility to magnetically perturb endosomes position in HeLa cell. We found the experimental conditions to achieve this goal. Finally, we used directly cytoskeleton elements as actin filament to trigger asymmetrically confined signaling proteins and trigger microtubule assembly, in cell extract droplets. More generally, these results show how symmetry breaking within cells can be induced and studied using magnetic nanoparticles and biophysical tools

    Detachment and fracture of cellular aggregates

    Get PDF
    International audienceThe dynamics of cellular adhesion and deadhesion, which play key roles in many cellular processes, have most often been studied at the scale of single bonds or single cells. However, multicellular adhesion and deadhesion are also central processes in tissue mechanics, morphogenesis, and pathophysiology, where collective tissue phenomena may introduce additional effects that are absent at the single-cell level. In this paper we present experiments on the adhesion of cellular aggregates and a laboratory model system to study tissue mechanics. We introduce a technique to measure the forces and energies involved in the detachment of an aggregate from a substrate (which can be viewed as a cellular tack assay) and in the fracture between two partially fused aggregates, as a function of the adhesion time, the pulling speed, and the cadherin density at the cell surface. We develop a model based on polymer physics to interpret the observations. We identify a significant contribution to the adhesion energy of viscous dissipation mechanisms present at the tissue scale that are absent at the single-cell level, as well as a significant effect of the speed at which the separation force is applied

    Optical Magnetometry of Single Biocompatible Micromagnets for Quantitative Magnetogenetic and Magnetomechanical Assays

    No full text
    The mechanical manipulation of magnetic nanoparticles is a powerful approach to probing and actuating biological processes in living systems. Implementing this technique in high-throughput assays can be achieved using biocompatible micromagnet arrays. However, the magnetic properties of these arrays are usually indirectly inferred from simulations or Stokes drag measurements, leaving unresolved questions about the actual profile of the magnetic fields at the micrometer scale and the exact magnetic forces that are applied. Here, we exploit the magnetic field sensitivity of nitrogen-vacancy color centers in diamond to map the 3D stray magnetic field produced by a single soft ferromagnetic microstructure. By combining this wide-field optical magnetometry technique with magneto-optic Kerr effect microscopy, we fully analyze the properties of the micromagnets, including their magnetization saturation and their size-dependent magnetic susceptibility. We further show that the high magnetic field gradients produced by the micromagnets, greater than 10<sup>4</sup> T·m<sup>–1</sup> under an applied magnetic field of about 100 mT, enables the manipulation of magnetic nanoparticles smaller than 10 nm inside living cells. This work paves the way for quantitative and parallelized experiments in magnetogenetics and magnetomechanics in cell biology
    corecore