29 research outputs found

    Emergent group level navigation: an agent-based evaluation of movement patterns in a folivorous primate.

    Get PDF
    The foraging activity of many organisms reveal strategic movement patterns, showing efficient use of spatially distributed resources. The underlying mechanisms behind these movement patterns, such as the use of spatial memory, are topics of considerable debate. To augment existing evidence of spatial memory use in primates, we generated movement patterns from simulated primate agents with simple sensory and behavioral capabilities. We developed agents representing various hypotheses of memory use, and compared the movement patterns of simulated groups to those of an observed group of red colobus monkeys (Procolobus rufomitratus), testing for: the effects of memory type (Euclidian or landmark based), amount of memory retention, and the effects of social rules in making foraging choices at the scale of the group (independent or leader led). Our results indicate that red colobus movement patterns fit best with simulated groups that have landmark based memory and a follow the leader foraging strategy. Comparisons between simulated agents revealed that social rules had the greatest impact on a group's step length, whereas the type of memory had the highest impact on a group's path tortuosity and cohesion. Using simulation studies as experimental trials to test theories of spatial memory use allows the development of insight into the behavioral mechanisms behind animal movement, developing case-specific results, as well as general results informing how changes to perception and behavior influence movement patterns

    ALMA observations of the Extended Green Object G19.01−0.03 – I. A Keplerian disc in a massive protostellar system

    Get PDF
    Using the Atacama Large Millimetre/submillimeter Array (ALMA) and the Karl G. Jansky Very Large Array (VLA), we observed the Extended Green Object (EGO) G19.01-0.03 with sub-arcsec resolution from 1.05 mm to 5.01 cm wavelengths. Our 0.4 arcsec 1600 au angular resolution ALMA observations reveal a velocity gradient across the millimetre core MM1, oriented perpendicular to the previously known bipolar molecular outflow, which is consistently traced by 20 lines of 8 molecular species with a range of excitation temperatures, including complex organic molecules (COMs). Kinematic modelling shows the data are well described by models that include a disc in Keplerian rotation and infall, with an enclosed mass of 40-70 M (within a 2000 au outer radius) for a disc inclination angle of i = 40, of which 5.4-7.2 M is attributed to the disc. Our new VLA observations show that the 6.7 GHz Class II methanol masers associated with MM1 fo a partial ellipse, consistent with an inclined ring, with a velocity gradient consistent with that of the theal gas. The disc-to-star mass ratio suggests the disc is likely to be unstable and may be fragmenting into as-yet-undetected low-mass stellar companions. Modelling the centimetre-millimetre spectral energy distribution of MM1 shows the ALMA 1.05 mm continuum emission is dominated by dust, whilst a free-free component, interpreted as a hypercompact H ii region, is required to explain the VLA 5 cm emission. The high enclosed mass derived for a source with a moderate bolometric luminosity (104L) suggests that the MM1 disc may feed an unresolved high-mass binary system

    Massive star formation in 100,000 years from turbulent and pressurized molecular clouds

    Get PDF
    Massive stars (with mass m_* > 8 solar masses) are fundamental to the evolution of galaxies, because they produce heavy elements, inject energy into the interstellar medium, and possibly regulate the star formation rate. The individual star formation time, t_*f, determines the accretion rate of the star; the value of the former quantity is currently uncertain by many orders of magnitude, leading to other astrophysical questions. For example, the variation of t_*f with stellar mass dictates whether massive stars can form simultaneously with low-mass stars in clusters. Here we show that t_*f is determined by conditions in the star's natal cloud, and is typically ~10^5 yr. The corresponding mass accretion rate depends on the pressure within the cloud - which we relate to the gas surface density - and on both the instantaneous and final stellar masses. Characteristic accretion rates are sufficient to overcome radiation pressure from ~100 solar mass protostars, while simultaneously driving intense bipolar gas outflows. The weak dependence of t_*f on the final mass of the star allows high- and low-mass star formation to occur nearly simultaneously in clusters.Comment: 9 pages plus 2 figures, Nature, 416, 59 (7th March 2002

    The Spread of Fecally Transmitted Parasites in Socially-Structured Populations

    Get PDF
    Mammals are infected by a wide array of gastrointestinal parasites, including parasites that also infect humans and domesticated animals. Many of these parasites are acquired through contact with infectious stages present in soil, feces or vegetation, suggesting that ranging behavior will have a major impact on their spread. We developed an individual-based spatial simulation model to investigate how range use intensity, home range overlap, and defecation rate impact the spread of fecally transmitted parasites in a population composed of social groups (i.e., a socially structured population). We also investigated the effects of epidemiological parameters involving host and parasite mortality rates, transmissibility, disease–related mortality, and group size. The model was spatially explicit and involved the spillover of a gastrointestinal parasite from a reservoir population along the edge of a simulated reserve, which was designed to mimic the introduction pathogens into protected areas. Animals ranged randomly within a “core” area, with biased movement toward the range center when outside the core. We systematically varied model parameters using a Latin hypercube sampling design. Analyses of simulation output revealed a strong positive association between range use intensity and the prevalence of infection. Moreover, the effects of range use intensity were similar in magnitude to effects of group size, mortality rates, and the per-contact probability of transmission. Defecation rate covaried positively with gastrointestinal parasite prevalence. Greater home range overlap had no positive effects on prevalence, with a smaller core resulting in less range overlap yet more intensive use of the home range and higher prevalence. Collectively, our results reveal that parasites with fecal-oral transmission spread effectively in socially structured populations. Future application should focus on parameterizing the model with empirically derived ranging behavior for different species or populations and data on transmission characteristics of different infectious organisms

    Network integration and limits to social inheritance in vervet monkeys

    Get PDF
    Social networks can be adaptive for members and a recent model (Ilany and Akçay 2016 Nat. Comm. 7, 12084 (doi:10.1038/ncomms12084)) has demonstrated that network structure can be maintained by a simple process of social inheritance. Here, we ask how juvenile vervet monkeys integrate into their adult grooming networks, using the model to test whether observed grooming patterns replicate network structure. Female juveniles, who are philopatric, increased their grooming effort towards adults more than males, although this was not reciprocated by the adults themselves. While more consistent maternal grooming networks, together with maternal network strength, predicted increasing similarity in the patterning of mother–daughter grooming allocations, daughters' grooming networks generally did not match closely those of their mothers. However, maternal networks themselves were not very consistent across time, thus presenting youngsters with a moving target that may be difficult to match. Observed patterns of juvenile female grooming did not replicate the adult network, for which increased association with adults not groomed by their mothers would be necessary. These results suggest that network flexibility, not stability, characterizes our groups and that juveniles are exposed to, and must learn to cope with, temporal shifts in network structure. We hypothesize that this may lead to individual variation in behavioural flexibility, which in turn may help explain why and how variation in sociability influences fitness.The NRF (South Africa) awards to S.P.H. and NSERC (Canada) grants to S.P.H. and L.B. L.B. is also supported by NSERC's Canada Research Chairs Program (Tier 1). T.B. is supported by a FQRNT Postdoctoral Fellowship and the Canada Research Chairs program (L.B.).http://rspb.royalsocietypublishing.org2019-04-11hj2018Anatomy and Physiolog
    corecore