518 research outputs found

    Impacts des insecticides agricoles sur les abeilles, les pollinisateurs et la biodiversité

    Get PDF
    International audienc

    The dose makes the poison: have “field realistic” rates of exposure of bees to neonicotinoid insecticides been overestimated in laboratory studies?

    Get PDF
    Recent laboratory based studies have demonstrated adverse sub-lethal effects of neonicotinoid insecticides on honey bees and bumble bees, and these studies have been influential in leading to a European Union moratorium on the use of three neonicotinoids, clothianidin, imidacloprid, and thiamethoxam on “bee attractive” crops. Yet so far, these same effects have not been observed in field studies. Here we review the three key dosage factors (concentration, duration and choice) relevant to field conditions, and conclude that these have probably been over estimated in many laboratory based studies

    An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 1: new molecules, metabolism, fate, and transport

    Get PDF
    With the exponential number of published data on neonicotinoids and fipronil during the last decade, an updated review of literature has been conducted in three parts. The present part focuses on gaps of knowledge that have been addressed after publication of the Worldwide Integrated Assessment (WIA) on systemic insecticides in 2015. More specifically, new data on the mode of action and metabolism of neonicotinoids and fipronil, and their toxicity to invertebrates and vertebrates, were obtained. We included the newly detected synergistic effects and/or interactions of these systemic insecticides with other insecticides, fungicides, herbicides, adjuvants, honeybee viruses, and parasites of honeybees. New studies have also investigated the contamination of all environmental compartments (air and dust, soil, water, sediments, and plants) as well as bees and apicultural products, food and beverages, and the exposure of invertebrates and vertebrates to such contaminants. Finally, we review new publications on remediation of neonicotinoids and fipronil, especially in water systems. Conclusions of the previous WIA in 2015 are reinforced; neonicotinoids and fipronil represent a major threat worldwide for biodiversity, ecosystems, and all the services the latter provide

    Environmental risks and challenges associated with neonicotinoid insecticides

    Get PDF
    Neonicotinoid use has increased rapidly in recent years, with a global shift toward insecticide applications as seed coatings rather than aerial spraying. While the use of seed coatings can lessen the amount of overspray and drift, the near universal and prophylactic use of neonicotinoid seed coatings on major agricultural crops has led to widespread detections in the environment (pollen, soil, water, honey). Pollinators and aquatic insects appear to be especially susceptible to the effects of neonicotinoids with current research suggesting that chronic sublethal effects are more prevalent than acute toxicity. Meanwhile, evidence of clear and consistent yield benefits from the use of neonicotinoids remains elusive for most crops. Future decisions on neonicotinoid use will benefit from weighing crop yield benefits versus environmental impacts to nontarget organisms and considering whether there are more environmentally benign alternatives

    Detection of Pesticides in Active and Depopulated Beehives in Uruguay

    Get PDF
    The influence of insecticides commonly used for agricultural purposes on beehive depopulation in Uruguay was investigated. Honeycombs, bees, honey and propolis from depopulated hives were analyzed for pesticide residues, whereas from active beehives only honey and propolis were evaluated. A total of 37 samples were analyzed, representing 14,800 beehives. In depopulated beehives only imidacloprid and fipronil were detected and in active beehives endosulfan, coumaphos, cypermethrin, ethion and chlorpyrifos were found. Coumaphos was present in the highest concentrations, around 1,000 μg/kg, in all the propolis samples from active beehives. Regarding depopulated beehives, the mean levels of imidacloprid found in honeycomb (377 μg/kg, Standard Deviation: 118) and propolis (60 μg/kg, Standard Deviation: 57) are higher than those described to produce bee disorientation and fipronil levels detected in bees (150 and 170 μg/kg) are toxic per se. The other insecticides found can affect the global fitness of the bees causing weakness and a decrease in their overall productivity. These preliminary results suggest that bees exposed to pesticides or its residues can lead them in different ways to the beehive

    Larval exposure to the neonicotinoid imidacloprid impacts adult size in the farmland butterfly Pieris brassicae

    Get PDF
    Populations of farmland butterflies have been suffering from substantial population declines in recent decades. These declines have been correlated with neonicotinoid usage both in Europe and North America but experimental evidence linking these correlations is lacking. The potential for non-target butterflies to be exposed to trace levels of neonicotinoids is high, due to the widespread contamination of agricultural soils and wild plants in field margins. Here we provide experimental evidence that field realistic, sub-lethal exposure to the neonicotinoid imidacloprid negatively impacts the development of the common farmland butterfly Pieris brassicae. Cabbage plants were watered with either 0, 1, 10, 100 or 200 parts per billion imidacloprid, to represent field margin plants growing in contaminated agricultural soils and these were fed to P. brassicae larvae. The approximate digestibility (AD) of the cabbage as well as behavioural responses by the larvae to simulated predator attacks were measured but neither were affected by neonicotinoid treatment. However, the duration of pupation and the size of the adult butterflies were both significantly reduced in the exposed butterflies compared to the controls, suggesting that adult fitness is compromised through exposure to this neonicotinoid

    Novel defensin subfamily from spinach (Spinacia oleracea)

    Get PDF
    Antimicrobial peptides (So-D1-7) were isolated from a crude cell wall preparation from spinach leaves (Spinacia oleracea cv. Matador) and, judged from their amino acid sequences, six of them (So-D2-7) represented a novel structural subfamily of plant defensins (group IV). Group-IV defensins were also functionally distinct from those of groups I–III. They were active at concentrations <20 μM against Gram-positive (Clavibacter michiganensis) and Gram-negative (Ralstonia solanacearum) bacterial pathogens, as well as against fungi, such as Fusarium culmorum, F. solani, Bipolaris maydis, and Colletotrichum lagenarium. Fungal inhibition occurred without hyphal branching. Group-IV defensins were preferentially distributed in the epidermal cell layer of leaves and in the subepidermal region of stems

    An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 3: alternatives to systemic insecticides

    Get PDF
    International audience; Over-reliance on pesticides for pest control is inflicting serious damage to the environmental services that underpin agricultural productivity. The widespread use of systemic insecticides, neonicotinoids, and the phenylpyrazole fipronil in particular is assessed here in terms of their actual use in pest management, effects on crop yields, and the development of pest resistance to these compounds in many crops after two decades of usage. Resistance can only be overcome in the longterm by implementing methods that are not exclusively based on synthetic pesticides. A diverse range of pest management tactics is already available, all of which can achieve efficient pest control below the economic injury level while maintaining the productivity of the crops. A novel insurance method against crop failure is shown here as an example of alternative methods that can protect farmer's crops and their livelihoods without having to use insecticides. Finally, some concluding remarks about the need for a new framework for a truly sustainable agriculture that relies mainly on natural ecosystem services instead of chemicals are included; this reinforcing the previous WIA conclusions (van der Sluijs et al. Environ Sci Pollut Res 22:148-154, 2015)

    Environmental fate and exposure; neonicotinoids and fipronil

    Get PDF
    Systemic insecticides are applied to plants using a wide variety of methods, ranging from foliar sprays to seed treatments and soil drenches. Neonicotinoids and fipronil are among the most widely used pesticides in the world. Their popularity is largely due to their high toxicity to invertebrates, the ease and flexibility with which they can be applied, their long persistence, and their systemic nature, which ensures that they spread to all parts of the target crop. However, these properties also increase the probability of environmental contamination and exposure of nontarget organisms. Environmental contamination occurs via a number of routes including dust generated during drilling of dressed seeds, contamination and accumulation in arable soils and soil water, runoff into waterways, and uptake of pesticides by nontarget plants via their roots or dust deposition on leaves. Persistence in soils, waterways, and nontarget plants is variable but can be prolonged; for example, the half-lives of neonicotinoids in soils can exceed 1,000 days, so they can accumulate when used repeatedly. Similarly, they can persist inwoody plants for periods exceeding 1 year. Breakdown results in toxic metabolites, though concentrations of these in the environment are rarely measured. Overall, there is strong evidence that soils, waterways, and plants in agricultural environments and neighboring areas are contaminated with variable levels of neonicotinoids or fipronil mixtures and their metabolites (soil, parts per billion (ppb)-parts per million (ppm) range; water, parts per trillion (ppt)-ppb range; and plants, ppb-ppm range). This provides multiple routes for chronic (and acute in some cases) exposure of nontarget animals. For example, pollinators are exposed through direct contact with dust during drilling; consumption of pollen, nectar, or guttation drops from seed-treated crops, water, and consumption of contaminated pollen and nectar from wild flowers and trees growing near-treated crops. Studies of food stores in honeybee colonies from across the globe demonstrate that colonies are routinely and chronically exposed to neonicotinoids, fipronil, and their metabolites (generally in the 1-100 ppb range), mixed with other pesticides some of which are known to act synergistically with neonicotinoids. Other nontarget organisms, particularly those inhabiting soils, aquatic habitats, or herbivorous insects feeding on noncrop plants in farmland, will also inevitably receive exposure, although data are generally lacking for these groups. We summarize the current state of knowledge regarding the environmental fate of these compounds by outlining what is known about the chemical properties of these compounds, and placing these properties in the context of modern agricultural practices
    corecore