10 research outputs found

    Exposure to repetitive head impacts is associated with corpus callosum microstructure and plasma total tau in former professional American football players

    Get PDF
    BACKGROUND: Exposure to repetitive head impacts (RHI) is associated with an increased risk of later-life neurobehavioral dysregulation and neurodegenerative disease. The underlying pathomechanisms are largely unknown. PURPOSE: To investigate whether RHI exposure is associated with later-life corpus callosum (CC) microstructure and whether CC microstructure is associated with plasma total tau and neuropsychological/neuropsychiatric functioning. STUDY TYPE: Retrospective cohort study. POPULATION: Seventy-five former professional American football players (age 55.2 ± 8.0 years) with cognitive, behavioral, and mood symptoms. FIELD STRENGTH/SEQUENCE: Diffusion-weighted echo-planar MRI at 3 T. ASSESSMENT: Subjects underwent diffusion MRI, venous puncture, neuropsychological testing, and completed self-report measures of neurobehavioral dysregulation. RHI exposure was assessed using the Cumulative Head Impact Index (CHII). Diffusion MRI measures of CC microstructure (i.e., free-water corrected fractional anisotropy (FA), trace, radial diffusivity (RD), and axial diffusivity (AD)) were extracted from seven segments of the CC (CC1-7), using a tractography clustering algorithm. Neuropsychological tests were selected: Trail Making Test Part A (TMT-A) and Part B (TMT-B), Controlled Oral Word Association Test (COWAT), Stroop Interference Test, and the Behavioral Regulation Index (BRI) from the Behavior Rating Inventory of Executive Function, Adult version (BRIEF-A). STATISTICAL TESTS: Diffusion MRI metrics were tested for associations with RHI exposure, plasma total tau, neuropsychological performance, and neurobehavioral dysregulation using generalized linear models for repeated measures. RESULTS: RHI exposure was associated with increased AD of CC1 (correlation coefficient (r) = 0.32, P < 0.05) and with increased plasma total tau (r = 0.34, P < 0.05). AD of the anterior CC1 was associated with increased plasma total tau (CC1: r = 0.30, P < 0.05; CC2: r = 0.29, P < 0.05). Higher trace, AD, and RD of CC1 were associated with better performance (P < 0.05) in TMT-A (trace, r = 0.33; AD, r = 0.31; and RD, r = 0.28) and TMT-B (trace, r = 0.31; RD, r = 0.34). Higher FA and AD of CC2 were associated with better performance (P < 0.05) in TMT-A (FA, r = 0.36; AD, r = 0.28), TMT-B (FA, r = 0.36; AD, r = 0.27), COWAT (FA, r = 0.36; AD, r = 0.32), and BRI (AD, r = 0.29). DATA CONCLUSION: These results suggest an association among RHI exposure, CC microstructure, plasma total tau, and clinical functioning in former professional American football players. LEVEL OF EVIDENCE: 3 Technical Efficacy Stage: 1

    The ENIGMA sports injury working group - an international collaboration to further our understanding of sport-related brain injury

    Get PDF
    Sport-related brain injury is very common, and the potential long-term effects include a wide range of neurological and psychiatric symptoms, and potentially neurodegeneration. Around the globe, researchers are conducting neuroimaging studies on primarily homogenous samples of athletes. However, neuroimaging studies are expensive and time consuming, and thus current findings from studies of sport-related brain injury are often limited by small sample sizes. Further, current studies apply a variety of neuroimaging techniques and analysis tools which limit comparability among studies. The ENIGMA Sports Injury working group aims to provide a platform for data sharing and collaborative data analysis thereby leveraging existing data and expertise. By harmonizing data from a large number of studies from around the globe, we will work towards reproducibility of previously published findings and towards addressing important research questions with regard to diagnosis, prognosis, and efficacy of treatment for sport-related brain injury. Moreover, the ENIGMA Sports Injury working group is committed to providing recommendations for future prospective data acquisition to enhance data quality and scientific rigor

    Diffusion Imaging of Sport-related Repetitive Head Impacts-A Systematic Review

    Get PDF
    Repetitive head impacts (RHI) are commonly observed in athletes participating in contact sports such as American football, ice hockey, and soccer. RHI usually do not result in acute symptoms and are therefore often referred to as subclinical or subconcussive head impacts. Epidemiological studies report an association between exposure to RHI and an increased risk for the development of neurodegenerative diseases. Diffusion magnetic resonance imaging (dMRI) has emerged as particularly promising for the detection of subtle alterations in brain microstructure following exposure to sport-related RHI. The purpose of this study was to perform a systematic review of studies investigating the effects of exposure to RHI on brain microstructure using dMRI. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) to determine studies that met inclusion and exclusion criteria across three databases. Seventeen studies were identified and critically evaluated. Results from these studies suggest an association between white matter alterations and RHI exposure in youth and young adult athletes. The most consistent finding across studies was lower or decreased fractional anisotropy (FA), a measure of the directionality of the diffusion of water molecules, associated with greater exposure to sport-related RHI. Whether decreased FA is associated with functional outcome (e.g., cognition) in those exposed to RHI is yet to be determined. This review further identified areas of importance for future research to increase the diagnostic and prognostic value of dMRI in RHI and to improve our understanding of the effects of RHI on brain physiology and microstructure

    The effects of repetitive head impacts on postural control: A systematic review

    No full text
    Objectives: The purpose of our study was to investigate the association between repetitive head impact (RHI) exposure and postural control. Design: Systematic review. Methods: PubMed, Embase and PsycInfo were searched using a self-developed search term including the keywords balance OR postural control AND repetitive OR sub-concussive head impacts. Twenty-one studies excluding non-peer reviewed studies, secondary studies, cross-sectional studies, animal studies, and studies investigating concussion were included for further analyses. We rated Level of Evidence and quality using the Centre for Evidence-Based Medicine tool, the Quality Assessment for the Systematic Review of Effectiveness, and the Sub-concussion Specific Tool. Results: All included studies were grouped into Category I and II studies. Category I included trials investigating the effects of controlled soccer heading on postural control (n = 8) and Category II studies were cohort studies investigating on-the-field changes between preseason and postseason assessments on postural control measures (n = 13). Findings were heterogeneous, with a tendency towards no effects of RHI on clinical postural control measures. Most laboratory studies in Category I used instrumented assessments whereas on-the-field studies in Category II used both instrumented and non-instrumented assessments. Conclusions: Due to heterogeneous findings, future studies aiming to investigate the effects of RHI on different athlete populations are needed on other participant cohorts. Furthermore, the combination of objective clinical balance measures may be a promising approach to accurately measure how, and to what degree, postural control may be affected by RHI

    Translational neuroimaging in mild traumatic brain injury

    Get PDF
    Traumatic brain injuries (TBIs) are common with an estimated 27.1 million cases per year. Approximately 80% of TBIs are categorized as mild TBI (mTBI) based on initial symptom presentation. While in most individuals, symptoms resolve within days to weeks, in some, symptoms become chronic. Advanced neuroimaging has the potential to characterize brain morphometric, microstructural, biochemical, and metabolic abnormalities following mTBI. However, translational studies are needed for the interpretation of neuroimaging findings in humans with respect to the underlying pathophysiological processes, and, ultimately, for developing novel and more targeted treatment options. In this review, we introduce the most commonly used animal models for the study of mTBI. We then summarize the neuroimaging findings in humans and animals after mTBI and, wherever applicable, the translational aspects of studies available today. Finally, we highlight the importance of translational approaches and outline future perspectives in the field of translational neuroimaging in mTBI

    Psychometric Properties of the German Version of the Rivermead Post-Concussion Symptoms Questionnaire in Adolescents after Traumatic Brain Injury and Their Proxies

    No full text
    The Rivermead Post-Concussion Symptoms Questionnaire (RPQ) assesses post-concussion symptoms (PCS) after traumatic brain injury (TBI). The current study examines the applicability of self-report and proxy versions of the German RPQ in adolescents (13–17 years) after TBI. We investigated reliability and validity on the total and scale score level. Construct validity was investigated by correlations with the Post-Concussion Symptoms Inventory (PCSI-SR13), Generalized Anxiety Disorder Scale 7 (GAD-7), and Patient Health Questionnaire 9 (PHQ-9) and by hypothesis testing regarding individuals’ characteristics. Intraclass correlation coefficients (ICC) assessed adolescent–proxy agreement. In total, 148 adolescents after TBI and 147 proxies completed the RPQ. Cronbach’s α (0.81–0.91) and McDonald’s ω (0.84–0.95) indicated good internal consistency. The three-factor structure outperformed the unidimensional model. The RPQ was strongly correlated with the PCSI-SR13 (self-report: r = 0.80; proxy: r = 0.75) and moderately–strongly with GAD-7 and PHQ-9 (self-report: r = 0.36, r = 0.35; proxy: r = 0.53, r = 0.62). Adolescent–proxy agreement was fair (ICC [2,1] = 0.44, CI95% [0.41, 0.47]). Overall, both self-report and proxy assessment forms of the German RPQ are suitable for application in adolescents after TBI. As proxy ratings tend to underestimate PCS, self-reports are preferable for evaluations. Only if a patient is unable to answer, a proxy should be used as a surrogate

    The ENIGMA Sports Injury Working Group: an International Collaboration to Further our Understanding of Sports-Related Brain Injury

    No full text
    Sports-related brain injury is very common, and the potential long-term effects include a wide range of neurological and psychiatric symptoms, and potentially neurodegeneration. Around the globe, researchers are conducting neuroimaging studies on primarily homogenous samples of athletes. However, neuroimaging studies are expensive and time consuming, and thus current findings from studies of sports-related brain injury are often limited by small sample size. Further, current studies apply a variety of neuroimaging techniques and analysis tools which limit comparability among studies. The ENIGMA Sports Injury working group aims to provide a platform for data sharing and collaborative data analysis thereby leveraging existing data and expertise. By harmonizing data from a large number of studies from around the globe, we will work towards reproducibility of previously published findings and towards addressing important research questions with regard to diagnosis, prognosis, and efficacy of treatment for sport-related brain injury. Moreover, the ENIGMA Sports Injury working group is committed to providing recommendations for future prospective data acquisition to enhance further, both, data quality and scientific rigor
    corecore