679 research outputs found

    Generation of radiative knots in a randomly pulsed protostellar jet I. Dynamics and energetics

    Full text link
    HH objects are characterized by a complex knotty morphology detected mainly along the axis of protostellar jets in a wide range of bands. Evidence of interactions between knots formed in different epochs have been found, suggesting that jets may result from the ejection of plasma blobs from the source. We aim at investigating the physical mechanism leading to the irregular knotty structure observed in jets in different bands and the complex interactions occurring among blobs of plasma ejected from the stellar source. We perform 2D axisymmetric HD simulations of a randomly ejected pulsed jet. The jet consists of a train of blobs which ram with supersonic speed into the ambient medium. The initial random velocity of each blob follows an exponential distribution. We explore the ejection rate parameter to derive constraints on the physical properties of protostellar jets by comparison of model results with observations. Our model takes into account radiative losses and thermal conduction. We find that the mutual interactions of blobs ejected at different epochs and with different speed lead to a variety of plasma components not described by current models. The main features characterizing the random pulsed jet scenario are: single high speed knots, showing a measurable proper motion in nice agreement with observations; irregular chains of knots aligned along the jet axis and possibly interacting with each other; reverse shocks interacting with outgoing knots; oblique shocks produced by the reflection of shocks at the jet cocoon. All these structures concur to determine the morphology of the jet in different bands. We also find that the thermal conduction plays a crucial role in damping out HD instabilities that would develop within the cocoon and that contribute to the jet breaking.Comment: 10 pages, 10 figures, accepted for publication in A&

    Redshifted X-rays from the material accreting onto TW Hya: evidence of a low-latitude accretion spot

    Get PDF
    High resolution spectroscopy, providing constraints on plasma motions and temperatures, is a powerful means to investigate the structure of accretion streams in CTTS. In particular, the accretion shock region, where the accreting material is heated to temperatures of a few MK as it continues its inward bulk motion, can be probed by X-ray spectroscopy. To attempt to detect for the first time the motion of this X-ray-emitting post-shock material, we searched for a Doppler shift in the deep Chandra/HETGS observation of the CTTS TW Hya. This test should unveil the nature of this X-ray emitting plasma component in CTTS, and constrain the accretion stream geometry. We searched for a Doppler shift in the X-ray emission from TW Hya with two different methods, by measuring the position of a selected sample of emission lines, and by fitting the whole TW Hya X-ray spectrum, allowing the line-of-sight velocity to vary. We found that the plasma at T~2-4 MK has a line-of-sight velocity of 38.3+/-5.1 km/s with respect to the stellar photosphere. This result definitively confirms that this X-ray-emitting material originates in the post-shock region, at the base of the accretion stream, and not in coronal structures. The comparison of the observed velocity along the line of sight, 38.3+/-5.1 km/s, with the inferred intrinsic velocity of the post shock of TW Hya, v_post~110-120 km/s, indicates that the footpoints of the accretion streams on TW Hya are located at low latitudes on the stellar surface. Our results indicate that complex magnetic field geometries, such as that of TW Hya, permit low-latitude accretion spots. Moreover, since on TW Hya the redshift of the soft X-ray emission is very similar to that of the narrow component of the CIV resonance doublet at 1550 Ang, as found by Ardila et al. (2013), then the plasma at 2-4 MK and that at 0.1 MK likely originate in the same post-shock regions.Comment: Accepted for publication in Astronomy & Astrophysics; 2nd version after language editor corrections; 16 pages, 8 figures, 6 table

    Spectroscopic observations of blue stars with infrared excesses in NGC 6611

    Get PDF
    Context. The young open cluster NGC 6611 includes a group of peculiar objects with interesting properties among its candidate members: blue stars with infrared (IR) excesses. These stars show excesses in IR bands, a signature of the presence of a circumstellar disk, but optical colors typical of older field stars. To confirm their membership in the cluster, it is therefore important to use new spectroscopic observations, together with previous photometric data. Aims. We aim to confirm the membership of these objects and investigate their physical properties to verify whether the observed colors are intrinsic or altered by the disk or by the accretion processes. Methods. We analyzed the intermediate-resolution spectroscopic data obtained for a subsample of blue stars in NGC 6611 with FLAMES. In particular, we focused on the study of 1) the profile of the Hα emission line, to select stars with accretion and outflow activity; 2) the Li absorption line, used as a youth indicator; 3) the radial velocity. Results. Using the spectroscopic analysis, it has been possible to investigate the Li absorption line, as well as to distinguish between stars with inert or active disks. In particular, from the analysis of the Hα emission line we were able to infer the activity due to the accretion and outflow processes and the variability of the emission. We also investigated the binarity of the blue stars and their membership to NGC 6611. Conclusions. From our spectroscopic analysis, we conclude that half of the sample of blue stars (10/20) are confirmed members of NGC 6611 (with 6 more stars that could also be possible members). In conclusion, our results indicate that members of young clusters can also be found in an anomalous region of the color-magnitude diagram, i.e., outside of the pre-main sequence locus where most of the cluster members lie

    Pre-main-sequence stars older than 8 Myr in the Eagle nebula

    Get PDF
    Attention is given to a population of 110 stars in the NGC 6611 cluster of the Eagle Nebula that have prominent near-infrared (NIR) excess and optical colours typical of pre-main sequence (PMS) stars older than 8 Myr. At least half of those for which spectroscopy exists have a Halpha emission line profile revealing active accretion. In principle, the V-I colours of all these stars would be consistent with those of young PMS objects (< 1 Myr) whose radiation is heavily obscured by a circumstellar disc seen at high inclination and in small part scattered towards the observer by the back side of the disc. However, using theoretical models it is shown here that objects of this type can only account for a few percent of this population. In fact, the spatial distribution of these objects, their X-ray luminosities, their optical brightness, their positions in the colour-magnitude diagram and the weak Li absorption lines of the stars studied spectroscopically suggest that most of them are at least 8 times older than the ~1 Myr-old PMS stars already known in this cluster and could be as old as ~30 Myr. This is the largest homogeneous sample to date of Galactic PMS stars considerably older than 8 Myr that are still actively accreting from a circumstellar disc and it allows us to set a lower limit of 7% to the disc frequency at ~16 Myr in NGC 6611. These values imply a characteristic exponential lifetime of ~6 Myr for disc dissipation.Comment: 12 pages, 5 figures, accepted for publication in Monthly Notices of the Astronomical Societ

    AE Aurigae: first detection of non-thermal X-ray emission from a bow shock produced by a runaway star

    Get PDF
    Runaway stars produce shocks when passing through interstellar medium at supersonic velocities. Bow shocks have been detected in the mid-infrared for several high-mass runaway stars and in radio waves for one star. Theoretical models predict the production of high-energy photons by non-thermal radiative processes in a number sufficiently large to be detected in X-rays. To date, no stellar bow shock has been detected at such energies. We present the first detection of X-ray emission from a bow shock produced by a runaway star. The star is AE Aur, which was likely expelled from its birthplace by the encounter of two massive binary systems and now is passing through the dense nebula IC 405. The X-ray emission from the bow shock is detected at 30" to the northeast of the star, coinciding with an enhancement in the density of the nebula. From the analysis of the observed X-ray spectrum of the source and our theoretical emission model, we confirm that the X-ray emission is produced mainly by inverse Compton upscattering of infrared photons from dust in the shock front.Comment: Accepted for publication in the Astrophysical Journal with number ApJ, 757, L6. Four figure

    Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars

    Get PDF
    (abridged) AIMS. We investigate the dynamics and stability of post-shock plasma streaming along nonuniform stellar magnetic fields at the impact region of accretion columns. We study how the magnetic field configuration and strength determine the structure, geometry, and location of the shock-heated plasma. METHODS. We model the impact of an accretion stream onto the chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our model takes into account the gravity, the radiative cooling, and the magnetic-field-oriented thermal conduction. RESULTS. The structure, stability, and location of the shocked plasma strongly depend on the configuration and strength of the magnetic field. For weak magnetic fields, a large component of B may develop perpendicular to the stream at the base of the accretion column, limiting the sinking of the shocked plasma into the chromosphere. An envelope of dense and cold chromospheric material may also develop around the shocked column. For strong magnetic fields, the field configuration determines the position of the shock and its stand-off height. If the field is strongly tapered close to the chromosphere, an oblique shock may form well above the stellar surface. In general, a nonuniform magnetic field makes the distribution of emission measure vs. temperature of the shocked plasma lower than in the case of uniform magnetic field. CONCLUSIONS. The initial strength and configuration of the magnetic field in the impact region of the stream are expected to influence the chromospheric absorption and, therefore, the observability of the shock-heated plasma in the X-ray band. The field strength and configuration influence also the energy balance of the shocked plasma, its emission measure at T > 1 MK being lower than expected for a uniform field. The above effects contribute in underestimating the mass accretion rates derived in the X-ray band.Comment: 11 pages, 11 Figures; accepted for publication on A&A. Version with full resolution images can be found at http://www.astropa.unipa.it/~orlando/PREPRINTS/sorlando_accretion_shocks.pd

    X-ray emission from protostellar jet HH 154: the first evidence of a diamond shock?

    Get PDF
    X-ray emission from about ten protostellar jets has been discovered and it appears as a feature common to the most energetic jets. Although X-ray emission seems to originate from shocks internal to jets, the mechanism forming these shocks remains controversial. One of the best studied X-ray jet is HH 154 that has been observed by Chandra over a time base of about 10 years. We analyze the Chandra observations of HH 154 by investigating the evolution of its X-ray source. We show that the X-ray emission consists of a bright stationary component and a faint elongated component. We interpret the observations by developing a hydrodynamic model describing a protostellar jet originating from a nozzle and compare the X-ray emission synthesized from the model with the X-ray observations. The model takes into account the thermal conduction and radiative losses and shows that the jet/nozzle leads to the formation of a diamond shock at the nozzle exit. The shock is stationary over the period covered by our simulations and generates an X-ray source with luminosity and spectral characteristics in excellent agreement with the observations. We conclude that the X-ray emission from HH 154 is consistent with a diamond shock originating from a nozzle through which the jet is launched into the ambient medium. We suggest that the physical origin of the nozzle could be related to the dense gas in which the HH 154 driving source is embedded and/or to the magnetic field at the jet launching/collimation region.Comment: Accepted for publication in The Astrophysical Journa

    Magnetohydrodynamic modeling of the accretion shocks in classical T Tauri stars: the role of local absorption on the X-ray emission

    Full text link
    We investigate the properties of X-ray emission from accretion shocks in classical T Tauri stars (CTTSs), generated where the infalling material impacts the stellar surface. Both observations and models of the accretion process reveal several aspects that are still unclear: the observed X-ray luminosity in accretion shocks is below the predicted value, and the density versus temperature structure of the shocked plasma, with increasing densities at higher temperature, deduced from the observations, is at odds with that proposed in the current picture of accretion shocks. To address these open issues we investigate whether a correct treatment of the local absorption by the surrounding medium is crucial to explain the observations. To this end, we describe the impact of an accretion stream on a CTTS by considering a magnetohydrodynamic model. From the model results we synthesize the X-ray emission from the accretion shock by producing maps and spectra. We perform density and temperature diagnostics on the synthetic spectra, and we directly compare the results with the observations. Our model shows that the X-ray fluxes inferred from the emerging spectra are lower than expected because of the complex local absorption by the optically thick material of the chromosphere and of the unperturbed stream. Moreover, our model including the effects of local absorption explains in a natural way the apparently puzzling pattern of density versus temperature observed in the X-ray emission from accretion shocks.Comment: Accepted for publication in Astrophysical Journal Letters; 5 pages, 4 figure

    Agenesia lumbosacra

    Get PDF
    La agenesia lumbosacra es una malformación congénita muy rara que forma parte del síndrome de regresión caudal; su incidencia es de un caso por cada 25,000 nacidos vivos y es más frecuente en los hijos de madres diabéticas. Se comunica el caso de un neonato masculino de dos días de vida extrauterina atendido en el Hospital Universitario Dr. José Eleuterio González, con malformaciones en el segmento corporal inferior. Con el estudio radiográfico se comprobó el diagnóstico de agenesia lumbosacra. La familia desconocía los tipos de malformaciones o enfermedades hereditarias en su árbol genealógico; el estudio de cariotipo no demostró alteraciones (46 XY), al igual que la determinación de hemoglobina glucosilada a la madre. En el ecocardiograma se identificó foramen oval permeable y miocardiopatía hipertrófica sin repercusión hemodinámica. Debido a su complejidad clínica, el tratamiento para la agenesia lumbosacacra debe abordarse con un equipo médico multidisciplinario para identificar cualquier alteración anatómica y funcional
    corecore