4,621 research outputs found

    The structure and kinematics of the the Galaxy thin gaseous disc outside the solar orbit

    Get PDF
    The rotation curve of the Galaxy is generally thought to be flat. However, using radial velocities from interstellar molecular clouds, which is common in rotation curve determination, seems to be incorrect and may lead to incorrectly inferring that the rotation curve is flat indeed. Tests basing on photometric and spectral observations of bright stars may be misleading. The rotation tracers (OB stars) are affected by motions around local gravity centers and pulsation effects seen in such early type objects. To get rid of the latter a lot of observing work must be involved. We introduce a method of studying the kinematics of the thin disc of our Galaxy outside the solar orbit in a way that avoids these problems. We propose a test based on observations of interstellar CaII H and K lines that determines both radial velocities and distances. We implemented the test using stellar spectra of thin disc stars at galactic longitudes of 135{\degr} and 180{\degr}. Using this method, we constructed the rotation curve of the thin disc of the Galaxy. The test leads to the obvious conclusion that the rotation curve of the thin gaseous galactic disk, represented by the CaII lines, is Keplerian outside the solar orbit rather than flat.Comment: 33 pages, 18 figures, accepted for publication in Publications of the Astronomical Society of the Pacific, 2015. February

    First operation of a double phase LAr Large Electron Multiplier Time Projection Chamber with a two-dimensional projective readout anode

    Full text link
    We have previously reported on the construction and successful operation of the novel double phase Liquid Argon Large Electron Multiplier Time Projection Chamber (LAr LEM-TPC). This detector concept provides a 3D-tracking and calorimetric device capable of adjustable charge amplification, a promising readout technology for next-generation neutrino detectors and direct Dark Matter searches. In this paper, we report on the first operation of a LAr LEM-TPC prototype - with an active area of 10×\times10 cm2^2 and 21 cm drift length - equipped with a single 1 mm thick LEM amplifying stage and a two dimensional projective readout anode. Cosmic muon events were collected, fully reconstructed and used to characterize the performance of the chamber. The obtained signals provide images of very high quality and the energy loss distributions of minimum ionizing tracks give a direct estimate of the amplification. We find that a stable gain of 27 can be achieved with this detector configuration corresponding to a signal-over-noise ratio larger than 200 for minimum ionizing tracks. The decoupling of the amplification stage and the use of the 2D readout anode offer several advantages which are described in the text.Comment: 25 pages, 17 figure

    Explicit volume-preserving numerical schemes for relativistic trajectories and spin dynamics

    Full text link
    A class of explicit numerical schemes is developed to solve for the relativistic dynamics and spin of particles in electromagnetic fields, using the Lorentz-BMT equation formulated in the Clifford algebra representation of Baylis. It is demonstrated that these numerical methods, reminiscent of the leapfrog and Verlet methods, share a number of important properties: they are energy-conserving, volume-conserving and second order convergent. These properties are analysed empirically by benchmarking against known analytical solutions in constant uniform electrodynamic fields. It is demonstrated that the numerical error in a constant magnetic field remains bounded for long time simulations in contrast to the Boris pusher, whose angular error increases linearly with time. Finally, the intricate spin dynamics of a particle is investigated in a plane wave field configuration.Comment: 15 pages, 9 figure

    THGEM operation in Ne and Ne/CH4

    Full text link
    The operation of Thick Gaseous Electron Multipliers (THGEM) in Ne and Ne/CH4 mixtures, features high multiplication factors at relatively low operation potentials, in both single- and double-THGEM configurations. We present some systematic data measured with UV-photons and soft x-rays, in various Ne mixtures. It includes gain dependence on hole diameter and gas purity, photoelectron extraction efficiency from CsI photocathodes into the gas, long-term gain stability and pulse rise-time. Position resolution of a 100x100 mm^2 X-rays imaging detector is presented. Possible applications are discussed.Comment: Submitted to JINST, 25 pages, 33 figure

    Large-Mass Ultra-Low Noise Germanium Detectors: Performance and Applications in Neutrino and Astroparticle Physics

    Get PDF
    A new type of radiation detector, a p-type modified electrode germanium diode, is presented. The prototype displays, for the first time, a combination of features (mass, energy threshold and background expectation) required for a measurement of coherent neutrino-nucleus scattering in a nuclear reactor experiment. The device hybridizes the mass and energy resolution of a conventional HPGe coaxial gamma spectrometer with the low electronic noise and threshold of a small x-ray semiconductor detector, also displaying an intrinsic ability to distinguish multiple from single-site particle interactions. The present performance of the prototype and possible further improvements are discussed, as well as other applications for this new type of device in neutrino and astroparticle physics (double-beta decay, neutrino magnetic moment and WIMP searches).Comment: submitted to Phys. Rev.

    Performance of the Muon Identification at LHCb

    Full text link
    The performance of the muon identification in LHCb is extracted from data using muons and hadrons produced in J/\psi->\mu\mu, \Lambda->p\pi and D^{\star}->\pi D0(K\pi) decays. The muon identification procedure is based on the pattern of hits in the muon chambers. A momentum dependent binary requirement is used to reduce the probability of hadrons to be misidentified as muons to the level of 1%, keeping the muon efficiency in the range of 95-98%. As further refinement, a likelihood is built for the muon and non-muon hypotheses. Adding a requirement on this likelihood that provides a total muon efficiency at the level of 93%, the hadron misidentification rates are below 0.6%.Comment: 17 pages, 10 figure
    corecore