259 research outputs found

    Seasonal oxygen, nitrogen and phosphorus benthic cycling along an impacted Baltic Sea estuary: regulation and spatial patterns

    Get PDF
    The regulatory roles of temperature, eutrophication and oxygen availability on benthic nitrogen (N) cycling and the stoichiometry of regenerated nitrogen and phosphorus (P) were explored along a Baltic Sea estuary affected by treated sewage discharge. Rates of sediment denitrification, anammox, dissimilatory nitrate reduction to ammonium (DNRA), nutrient exchange, oxygen (O-2) uptake and penetration were measured seasonally. Sediments not affected by the nutrient plume released by the sewage treatment plant (STP) showed a strong seasonality in rates of O-2 uptake and coupled nitrification-denitrification, with anammox never accounting for more than 20 % of the total dinitrogen (N-2) production. N cycling in sediments close to the STP was highly dependent on oxygen availability, which masked temperature-related effects. These sediments switched from low N loss and high ammonium (NH4 (+)) efflux under hypoxic conditions in the fall, to a major N loss system in the winter when the sediment surface was oxidized. In the fall DNRA outcompeted denitrification as the main nitrate (NO3 (-)) reduction pathway, resulting in N recycling and potential spreading of eutrophication. A comparison with historical records of nutrient discharge and denitrification indicated that the total N loss in the estuary has been tightly coupled to the total amount of nutrient discharge from the STP. Changes in dissolved inorganic nitrogen (DIN) released from the STP agreed well with variations in sedimentary N-2 removal. This indicates that denitrification and anammox efficiently counterbalance N loading in the estuary across the range of historical and present-day anthropogenic nutrient discharge. Overall low N/P ratios of the regenerated nutrient fluxes impose strong N limitation for the pelagic system and generate a high potential for nuisance cyanobacterial blooms

    Fueling of a marine-terrestrial ecosystem by a major seabird colony

    Get PDF
    Seabirds redistribute nutrients between different ecosystem compartments and over vast geographical areas. This nutrient transfer may impact both local ecosystems on seabird breeding islands and regional biogeochemical cycling, but these processes are seldom considered in local conservation plans or biogeochemical models. The island of Stora Karlso in the Baltic Sea hosts the largest concentration of piscivorous seabirds in the region, and also hosts a large colony of insectivorous House martins Delichon urbicum adjacent to the breeding seabirds. We show that a previously reported unusually high insectivore abundance was explained by large amounts of chironomids-highly enriched in delta N-15-that feed on seabird residues as larvae along rocky shores to eventually emerge as flying adults. Benthic ammonium and phosphate fluxes were up to 163% and 153% higher close to the colony (1,300 m distance) than further away (2,700 m) and the estimated nutrient release from the seabirds at were in the same order of magnitude as the loads from the largest waste-water treatment plants in the region. The trophic cascade impacting insectivorous passerines and the substantial redistribution of nutrients suggest that seabird nutrient transfer should be increasingly considered in local conservation plans and regional nutrient cycling models.Peer reviewe

    Influence of natural oxygenation of Baltic proper deep water on benthic recycling and removal of phosphorus, nitrogen, silicon and carbon

    Get PDF
    At the end of 2014, a Major Baltic Inflow (MBI) brought oxygenated, salty water into the Baltic proper and reached the long-term anoxic Eastern Gotland Basin (EGB) by March 2015. In July 2015, we measured benthic fluxes of phosphorus (P), nitrogen (N) and silicon (Si) nutrients and dissolved inorganic carbon (DIC) in situ using an autonomous benthic lander at deep sites (170–210 m) in the EGB, where the bottom water oxygen concentration was 30–45 μM. The same in situ methodology was used to measure benthic fluxes at the same sites in 2008–2010, but then under anoxic conditions. The high efflux of phosphate under anoxic conditions became lower upon oxygenation, and turned into an influx in about 50% of the flux measurements. The C:P and N:P ratios of the benthic solute flux changed from clearly below the Redfield ratio (on average about 70 and 3–4, respectively) under anoxia to approaching or being well above the Redfield ratio upon oxygenation. These observations demonstrate retention of P in newly oxygenated sediments. We found no significant effect of oxygenation on the benthic ammonium, silicate and DIC flux. We also measured benthic denitrification, anammox, and dissimilatory nitrate reduction to ammonium (DNRA) rates at the same sites using isotope-pairing techniques. The bottom water of the long-term anoxic EGB contained less than 0.5 μM nitrate in 2008–2010, but the oxygenation event created bottom water nitrate concentrations of about 10 μM in July 2015 and the benthic flux of nitrate was consistently directed into the sediment. Nitrate reduction to both dinitrogen gas (denitrification) and ammonium (DNRA) was initiated in the newly oxygenated sediments, while anammox activity was negligible. We estimated the influence of this oxygenation event on the magnitudes of the integrated benthic P flux (the internal P load) and the fixed N removal through benthic and pelagic denitrification by comparing with a hypothetical scenario without the MBI. Our calculations suggest that the oxygenation triggered by the MBI in July 2015, extrapolated to the basin-wide scale of the Baltic proper, decreased the internal P load by 23% and increased the total (benthic plus pelagic) denitrification by 18%

    Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders.

    Get PDF
    International audienceSHANK3 (also known as ProSAP2) regulates the structural organization of dendritic spines and is a binding partner of neuroligins; genes encoding neuroligins are mutated in autism and Asperger syndrome. Here, we report that a mutation of a single copy of SHANK3 on chromosome 22q13 can result in language and/or social communication disorders. These mutations concern only a small number of individuals, but they shed light on one gene dosage-sensitive synaptic pathway that is involved in autism spectrum disorders

    LBT/ARGOS adaptive optics observations of z2\sim 2 lensed galaxies

    Get PDF
    Gravitationally lensed systems allow a detailed view of galaxies at high redshift. High spatial- and spectral-resolution measurements of arc-like structures can offer unique constraints on the physical and dynamical properties of high-z systems. We present near-infrared spectra centred on the gravitational arcs of six known z ~ 2 lensed star-forming galaxies of stellar masses of 10^9-10^11 Msun and star formation rate (SFR) in the range between 10 and 400 Msun/yr. Ground layer adaptive optics (AO)-assisted observations are obtained at the Large Binocular Telescope (LBT) with the LUCI spectrographs during the commissioning of the ARGOS facility. We used MOS masks with curved slits to follow the extended arched structures and study the diagnostic emission lines. Combining spatially resolved kinematic properties across the arc-like morphologies, emission line diagnostics and archival information, we distinguish between merging and rotationally supported systems, and reveal the possible presence of ejected gas. For galaxies that have evidence for outflows, we derive outflow energetics and mass-loading factors compatible with those observed for stellar winds in local and high-z galaxies. We also use flux ratio diagnostics to derive gas-phase metallicities. The low signal-to-noise ratio in the faint Hβ\beta and nitrogen lines allows us to derive an upper limit of ~ 0.15 dex for the spatial variations in metallicity along the slit for the lensed galaxy J1038. Analysed near-infrared spectra presented here represent the first scientific demonstration of performing AO-assisted multi-object spectroscopy with narrow curved-shape slits. The increased angular and spectral resolution, combined with the binocular operation mode with the 8.4-m-wide eyes of LBT, will allow the characterisation of kinematic and chemical properties of a large sample of galaxies at high-z in the near future.Comment: 18 pages, 13 figures, accepted for publication in A&

    Rare familial 16q21 microdeletions under a linkage peak implicate cadherin 8 (CDH8) in susceptibility to autism and learning disability

    Get PDF
    Background: Autism spectrum disorder (ASD) is characterised by impairments in social communication and by a pattern of repetitive behaviours, with learning disability (LD) typically seen in up to 70% of cases. A recent study using the PPL statistical framework identified a novel region of genetic linkage on chromosome 16q21 that is limited to ASD families with LD. Methods: In this study, two families with autism and/or LD are described which harbour rare >1.6 Mb microdeletions located within this linkage region. The deletion breakpoints are mapped at base-pair resolution and segregation analysis is performed using a combination of 1M single nucleotide polymorphism (SNP) technology, array comparative genomic hybridisation (CGH), long-range PCR, and Sanger sequencing. The frequency of similar genomic variants in control subjects is determined through analysis of published SNP array data. Expression of CDH8, the only gene disrupted by these microdeletions, is assessed using reverse transcriptase PCR and in situ hybridisation analysis of 9 week human embryos. Results: The deletion of chr16: 60 025 584-61 667 839 was transmitted to three of three boys with autism and LD and none of four unaffected siblings, from their unaffected mother. In a second family, an overlapping deletion of chr16: 58 724 527-60 547 472 was transmitted to an individual with severe LD from his father with moderate LD. No copy number variations (CNVs) disrupting CDH8 were observed in 5023 controls. Expression analysis indicates that the two CDH8 isoforms are present in the developing human cortex. Conclusion: Rare familial 16q21 microdeletions and expression analysis implicate CDH8 in susceptibility to autism and LD

    Intracellular nitrate storage by diatoms can be an important nitrogen pool in freshwater and marine ecosystems

    Get PDF
    Identifying and quantifying nitrogen pools is essential for understanding the nitrogen cycle in aquatic ecosystems. The ubiquitous diatoms represent an overlooked nitrate pool as they can accumulate nitrate intracellularly and utilize it for nitrogen assimilation, dissipation of excess photosynthetic energy, and Dissimilatory Nitrate Reduction to Ammonium (DNRA). Here, we document the global co-occurrence of diatoms and intracellular nitrate in phototrophic microbial communities in freshwater (n = 69), coastal (n = 44), and open marine (n = 4) habitats. Diatom abundance and total intracellular nitrate contents in water columns, sediments, microbial mats, and epilithic biofilms were highly significantly correlated. In contrast, diatom community composition had only a marginal influence on total intracellular nitrate contents. Nitrate concentrations inside diatom cells exceeded ambient nitrate concentrations ∼100–4000-fold. The collective intracellular nitrate pool of the diatom community accounted for <1% of total nitrate in pelagic habitats and 65–95% in benthic habitats. Accordingly, nitrate-storing diatoms are emerging as significant contributors to benthic nitrogen cycling, in particular through Dissimilatory Nitrate Reduction to Ammonium activity under anoxic conditions
    corecore