13 research outputs found

    Hybrid Copper-Nanowire–Reduced-Graphene-Oxide Coatings: A “Green Solution” Toward Highly Transparent, Highly Conductive, and Flexible Electrodes for (Opto)Electronics

    Get PDF
    This study reports a novel green chemistry approach to assemble copper-nanowires/reduced-graphene-oxide hybrid coatings onto inorganic and organic supports. Such films are robust and combine sheet resistances ( 70%) that are rivalling those of indium–tin oxide. These electrodes are suitable for flexible electronic applications as they show a sheet resistance change of <4% after 10 000 bending cycles at a bending radius of 1.0 cm, when supported on polyethylene terephthalate foils. Significantly, the wet-chemistry method involves the preparation of dispersions in environmentally friendly solvents and avoids the use of harmful reagents. Such inks are processed at room temperature on a wide variety of surfaces by spray coating. As a proof-of-concept, this study demonstrates the successful use of such coatings as electrodes in high-performance electrochromic devices. The robustness of the electrodes is demonstrated by performing several tens of thousands of cycles of device operation. These unique conducting coatings hold potential for being exploited as transparent electrodes in numerous optoelectronic applications such as solar cells, light-emitting diodes, and displays

    Tuning the energetics and tailoring the optical properties of silver clusters confined in zeolites

    Get PDF
    The integration of metal atoms and clusters in well-defined dielectric cavities is a powerful strategy to impart new properties to them that depend on the size and geometry of the confined space as well as on metal-host electrostatic interactions. Here, we unravel the dependence of the electronic properties of metal clusters on space confinement by studying the ionization potential of silver clusters embedded in four different zeolite environments over a range of silver concentrations. Extensive characterization reveals a strong influence of silver loading and host environment on the cluster ionization potential, which is also correlated to the cluster's optical and structural properties. Through fine-tuning of the zeolite host environment, we demonstrate photoluminescence quantum yields approaching unity. This work extends our understanding of structure property relationships of small metal clusters and applies this understanding to develop highly photoluminescent materials with potential applications in optoelectronics and bioimaging

    Graphene transistors for real-time monitoring molecular self-assembly dynamics

    Get PDF
    Mastering the dynamics of molecular assembly on surfaces enables the engineering of predictable structural motifs to bestow programmable properties upon target substrates. Yet, monitoring self-assembly in real time on technologically relevant interfaces between a substrate and a solution is challenging, due to experimental complexity of disentangling interfacial from bulk phenomena. Here, we show that graphene devices can be used as highly sensitive detectors to read out the dynamics of molecular self-assembly at the solid/liquid interface in-situ. Irradiation of a photochromic molecule is used to trigger the formation of a metastable self-assembled adlayer on graphene and the dynamics of this process are monitored by tracking the current in the device over time. In perspective, the electrical readout in graphene devices is a diagnostic and highly sensitive means to resolve molecular ensemble dynamics occurring down to the nanosecond time scale, thereby providing a practical and powerful tool to investigate molecular self-organization in 2D

    Induced Fit Interanion Discrimination by Binding-Induced Excimer Formation

    No full text
    The synthesis, photophysical, and anion-binding properties of a series of di-, tri-, and tetrapodal anion-binding hosts based on aminopyridinium units with pyrenyl reporter groups are described. The ditopic mesitylene-derived calix[4]arene-based host 4 binds strongly to dicarboxylates, particularly malonate, in a 2:1 anion:host ratio but is essentially nonemissive in the presence of all anions except chloride because of intramolecular quenching by the pyridinium units. Addition of chloride results in a conformational change, giving an initial increase in emission assigned to intramolecular excimer formation. Further chloride addition also results in an increase in the intensity of the pyrenyl monomer emission as chloride binding reduces the acceptor ability of the pyridinium groups. This behavior is not exhibited by control compounds 5 and 6, which lack the ditopic geometry and calixarene spacer unit; however, tripodal 6 forms 1:2 anion:host complexes with a range of anions

    Studie van de verspreiding en biotoopkeuze van de grote mammalia in Algerije in het kader van het natuurbehoud

    Get PDF
    Molecular switches enable the fabrication of multifunctional devices in which an electrical output can be modulated by external stimuli. The working mechanism of these devices is often hard to prove, since the molecular switching events are only indirectly confirmed through electrical characterization, without real-space visualization. Here, we show how photochromic molecules self-assembled on graphene and MoS2 generate atomically precise superlattices in which a light-induced structural reorganization enables precise control over local charge carrier density in high-performance devices. By combining different experimental and theoretical approaches, we achieve exquisite control over events taking place from the molecular level to the device scale. Unique device functionalities are demonstrated, including the use of spatially confined light irradiation to define reversible lateral heterojunctions between areas possessing different doping levels. Molecular assembly and light-induced doping are analogous for graphene and MoS2, demonstrating the generality of our approach to optically manipulate the electrical output of multi-responsive hybrid devices

    Pluronic-silica (PluS) nanoparticles doped with multiple dyes featuring complete energy transfer

    No full text
    We report here the design of two sets Of multifltiorophoric silica nanoparticles, observing unprecedented efficiencies in the energy-transfer processes among the doping dyes. These nanomaterials show a very high overall sensitization, allowing under a single wavelength excitation to obtain many different colors (one per nanoparticle) in emission with negligible crosstalk. Moreover, each particle can present very large and tunable pseudo-Stokes shifts (up to 435 nm), a very high brightness even exciting the bluest donor, and a negligible residual emission intensity from all donor dyes. All these features, combined with colloidal stability and synthetic method reliability, make these multicomponent nanoparticles very promising for multiplex analysis and for all the diagnostic techniques requiring high sensitivity associated with a large Stokes shift
    corecore