631 research outputs found

    Synthesis and characterization of multiferroic BiMn7_7O12_{12}

    Full text link
    We report on the high pressure synthesis of BiMn7_7O12_{12}, a manganite displaying a "quadruple perovskite" structure. Structural characterization of single crystal samples shows a distorted and asymmetrical coordination around the Bi atom, due to presence of the 6s26s^{2} lone pair, resulting in non-centrosymmetric space group Im, leading to a permanent electrical dipole moment and ferroelectric properties. On the other hand, magnetic characterization reveals antiferromagnetic transitions, in agreement with the isostructural compounds, thus evidencing two intrinsic properties that make BiMn7_7O12_{12} a promising multiferroic material.Comment: 4 pages, 3 figure

    Internal-strain mediated coupling between polar Bi and magnetic Mn ions in the defect-free quadruple-perovskite BiMn3_3Mn4_4O12_{12}

    Full text link
    By means of neutron powder diffraction, we investigated the effect of the polar Bi3+^{3+} ion on the magnetic ordering of the Mn3+^{3+} ions in BiMn3_3Mn4_4O12_{12}, the counterpart with \textit{quadruple} perovskite structure of the \textit{simple} perovskite BiMnO3_3. The data are consistent with a \textit{noncentrosymmetric} spacegroup ImIm which contrasts the \textit{centrosymmetric} one I2/mI2/m previously reported for the isovalent and isomorphic compound LaMn3_3Mn4_4O12_{12}, which gives evidence of a Bi3+^{3+}-induced polarization of the lattice. At low temperature, the two Mn3+^{3+} sublattices of the A′A' and BB sites order antiferromagnetically (AFM) in an independent manner at 25 and 55 K, similarly to the case of LaMn3_3Mn4_4O12_{12}. However, both magnetic structures of BiMn3_3Mn4_4O12_{12} radically differ from those of LaMn3_3Mn4_4O12_{12}. In BiMn3_3Mn4_4O12_{12} the moments MA′\textbf{M}_{A'} of the A′A' sites form an anti-body AFM structure, whilst the moments \textbf{M}B_{B} of the BB sites result from a large and \textit{uniform} modulation ±MB,b\pm \textbf{M}_{B,b} along the b-axis of the moments \textbf{M}B,ac_{B,ac} in the acac-plane. The modulation is strikingly correlated with the displacements of the Mn3+^{3+} ions induced by the Bi3+^{3+} ions. Our analysis unveils a strong magnetoelastic coupling between the internal strain created by the Bi3+^{3+} ions and the moment of the Mn3+^{3+} ions in the BB sites. This is ascribed to the high symmetry of the oxygen sites and to the absence of oxygen defects, two characteristics of quadruple perovskites not found in simple ones, which prevent the release of the Bi3+^{3+}-induced strain through distortions or disorder. This demonstrates the possibility of a large magnetoelectric coupling in proper ferroelectrics and suggests a novel concept of internal strain engineering for multiferroics design.Comment: 9 pages, 7 figures, 5 table

    Organic Inhibitors to Prevent Chloride-Induced Corrosion in Concrete: Atomistic Simulations of Triethylenetetramine-Based Inhibitor Film

    Get PDF
    Inhibitors are largely used to prevent chloride-induced corrosion in reinforced concrete structures thanks to both a barrier effect on chloride penetration and a competition with the adsorption of the inhibitor. The interaction mechanisms between passive film on carbon steel, the inhibitor molecule, and chlorides still require deeper understanding. Theoretical studies based on molecular mechanics (MM) and molecular dynamics (MD) methods can be useful to better understand the passive film formation and its interaction with chlorides. In this work, the interaction between a triethylenetetramine (TETA) inhibitor film on γ-FeOOH surface and chlorides is studied using MD methods. After MM optimization in the initial adsorption stage, some chlorides are close to protective TETA film. After MD run at room temperature effectively, chlorides remain close to the protective film. In order to have an effective barrier on chloride attack, the metal oxide must remain wholly covered by the protective film. The TETA film well covers the lepidocrocite surface but cannot kinetically efficiently prevent the chloride-induced corrosion compared to other organic films exposing COO− groups because it does not exert any repulsion to chlorides

    Electron localization and possible phase separation in the absence of a charge density wave in single-phase 1T-VS2_2

    Full text link
    We report on a systematic study of the structural, magnetic and transport properties of high-purity 1T-VS2_2 powder samples prepared under high pressure. The results differ notably from those previously obtained by de-intercalating Li from LiVS2_2. First, no Charge Density Wave (CDW) is found by transmission electron microscopy down to 94 K. Though, \textit{ab initio} phonon calculations unveil a latent CDW instability driven by an acoustic phonon softening at the wave vector qCDW≈{\bf q}_{CDW} \approx (0.21,0.21,0) previously reported in de-intercalated samples. A further indication of latent lattice instability is given by an anomalous expansion of the V-S bond distance at low temperature. Second, infrared optical absorption and electrical resistivity measurements give evidence of non metallic properties, consistent with the observation of no CDW phase. On the other hand, magnetic susceptibility and NMR data suggest the coexistence of localized moments with metallic carriers, in agreement with \textit{ab initio} band structure calculations. This discrepancy is reconciled by a picture of electron localization induced by disorder or electronic correlations leading to a phase separation of metallic and non-metallic domains in the nm scale. We conclude that 1T-VS2_2 is at the verge of a CDW transition and suggest that residual electronic doping in Li de-intercalated samples stabilizes a uniform CDW phase with metallic properties.Comment: 22 pages, 10 Figures. Full resolution pictures available at http://journals.aps.org/prb/abstract/10.1103/PhysRevB.89.23512

    Direct-current stimulation of posterior tibial nerve modulates the Soleus H-reflex amplitude

    Get PDF
    Introduction: Several studies demonstrated that transcranial direct current stimulation (tDCs) is a promising non-invasive tool able to modulate the excitability of several CNS structures. Its effect is usually facilitatory when using anodal polarity and inhibitory for the cathodal one. In most studies, DC stimulation was applied on cortical or spinal structures, while little is known about its effect on peripheral nerves fibres. This research aims at highlighting such effect. Methods: In twenty subjects, electrical stimulation of the posterior tibial nerve (1 ms current pulses, 1 shock every 9 s) was used to elicit the H-re\ufb02ex in the Soleus muscle. Once the H-re\ufb02ex amplitude was stable for at least 15 min, DCs (either cathodal or anodal) was applied proximally to the same nerve for 10 min, looking for changes in re\ufb02ex amplitude. Then, the H-re\ufb02ex was measured for 30 further minutes, looking for after-effects. Results: Cathodal DCs induced a significant increase of the H-re\ufb02ex amplitude (about +35%) with respect to the control value. In this configuration the after-effect lasted about 25 min. Anodal DCs induced instead a significant decrease (about -25%) of the re\ufb02ex amplitude. A significant after-effect was observed for just about 5 min. Discussion: This study shows that DCs applied to a peripheral nerve is able to elicit neuromodulation. Its polarity dependence suggests a local change in the excitability of nerve fibres rather than a central modulation of the spinal re\ufb02ex circuit. Moreover it is worth to note that the polarity dependence was opposite to what found for tDCS

    Utilizzo di nitrati come inibitori di corrosione per le armature nel calcestruzzo

    Get PDF
    Corrosion inhibitors have been long considered as an effective preventative technique to slow down the onset and/or propagation of corrosion phenomena in reinforced concrete. Several substances have been evaluated as possible candidates, and great interest has been dedicated to nitrite ion. When investigating how these substances slow down corrosion related processes – chlorides diffusion, critical chloride threshold, CO2 penetration and corrosion propagation –interactions between inhibitor and concrete are also vital. Recently, nitrate based compounds have been proposed as corrosion inhibitors, as they present lower cost than nitrites and are already used in concrete as set accelerators. Some studies have shown that nitrates inhibiting mechanism is similar to that of nitrites. This work proposes the evaluation of a nitrate based substance as possible corrosion inhibitor in concrete, and compares its performance with a nitrite based inhibitor

    Implants outcome inserted in different sites

    Get PDF
    Oral rehabilitation by means dental implants has high standards of success. Recently, a new type of two-pieces spiral implants has been introduced in the market. Since few reports focus of the efficacy of this medical device as a reliable tool for oral rehabilitation, here a retrospective study is reported. In the period June-December 2017 one hundred and two spiral fixtures were inserted, half in females and 51 in males. The median age was 56 \ub1 8 (min-max 36-73 years). Forty-eight implants were inserted in upper jawbone and 54 in mandible. Two implants were lost and thus survival rate (SVR) is 99.9%. Then peri-implant bone resorption was used to investigate the clinical success (success rate, SCR) over time. No implants have a crestal bone resorption greater than 1.5 mm in the first year follow up. No studied variable has an effect on clinical outcome. In conclusion the studied implants have high SCR and SVR so that they are good tools for oral rehabilitation

    Evaluation of quality of drinking water from Baghdad, Iraq

    Get PDF
    This is a joint work between the Italian Red Cross and the Environmental Laboratories, Baghdad. The drinking water (DW) samples from 16 residential districts in Baghdad were chemically evaluated with reference to the raw water samples and water directly taken from the purification plants. In addition to the routinely measured parameters, 17 metals and 11 trihalomathane (THM) were measured. Generally, the samples of water analysed can be considered of good quality. The relatively high sulphate and aluminium contents results from the use of aluminium sulphate as flocculent. The ammonia and Nitrite concentrations were lower than the detectable limit, because ammonia is converted into chloramines and nitrite is converted into Nitrate during chlorination. This indicates no sewage contamination of the drinking water. The high chloride contents can be referred to the use of partially degraded hypo for the disinfection. The presence of THM's in the samples analysed is indicative of good disinfection process. The presence of these compounds is preferred better than bacterial contamination. The relatively high levels of zinc and iron have no impact on the quality of DW. Iron, however, was efficiently removed during the treatment, together with Manganese. Reference was done to the EU specification of drinking water regarding total hardness, chloride contents, sulphate, iron and THM's. As for the iron content, the original pH of the river water (7.5 and 8.0) ensures that Iron should not be present in soluble form at a detectable level. Corrosion of the pipes could be one of the reasons for the presence of iron. Key Words: Drinking water quality, heavy metals, sulphate, Aluminium, Trihalomethans, hardness

    Direct current stimulation modulates the excitability of the sensory and motor fibres in the human posterior tibial nerve, with a long-lasting effect on the H-reflex

    Get PDF
    Several studies demonstrated that transcutaneous direct current stimulation (DCS) may modulate central nervous system excitability. However, much less is known about how DC affects peripheral nerve fibres. We investigated the action of DCS on motor and sensory fibres of the human posterior tibial nerve, with supplementary analysis in acute experiments on rats. In forty human subjects, electric pulses at the popliteal fossa were used to elicit either M-waves or H-reflexes in the Soleus, before (15 min), during (10 min) and after (30 min) DCS. Cathodal or anodal current (2 mA) was applied to the same nerve. Cathodal DCS significantly increased the H-reflex amplitude; the post-polarization effect lasted up to ~ 25 min after the termination of DCS. Anodal DCS instead significantly decreased the reflex amplitude for up to ~ 5 min after DCS end. DCS effects on M-wave showed the same polarity dependence but with considerably shorter after-effects, which never exceeded 5 min. DCS changed the excitability of both motor and sensory fibres. These effects and especially the long-lasting modulation of the H-reflex suggest a possible rehabilitative application of DCS that could be applied either to compensate an altered peripheral excitability or to modulate the afferent transmission to spinal and supraspinal structures. In animal experiments, DCS was applied, under anaesthesia, to either the exposed peroneus nerve or its Dorsal Root, and its effects closely resembled those found in human subjects. They validate therefore the use of the animal models for future investigations on the DCS mechanisms

    Influence of Hydrogen and Low Temperature on Pipeline Steels Mechanical Behaviour

    Get PDF
    Abstract In the presence of H2S, metallic materials, such as carbon and low alloy steels, may suffer hydrogen damage and hydrogen embrittlement. Gas transporting pipes in low temperature environment, during the shutdown and the subsequent re-starting operations, are exposed to very low temperatures (T=-40 °C). In the presence of high H2S content in the gas, the risk of brittle failure can be increased due to the effect of hydrogen on steel toughness. In this paper the influence of hydrogen and low temperature on mechanical properties of two pipeline materials, F22 low alloy and X65 micro-alloyed steels, is studied. Steels have been hydrogen charged by means of an electrochemical method: diffusible hydrogen content of steels is in the range 0.6 to 2 ppm. Charpy and J-R curves tests were carried out in the range from room temperature to T=-120 °C. Hydrogen affects mechanical properties of the tested materials, mainly reducing fracture toughness in J integral tests, while little influence has been observed in CV tests. Fracture surface examination confirms the results of mechanical testing
    • …
    corecore