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Abstract 

In the presence of H2S, metallic materials, such as carbon and low alloy steels, may suffer hydrogen damage and 

hydrogen embrittlement. Gas transporting pipes in low temperature environment, during the shutdown and the 

subsequent re-starting operations, are exposed to very low temperatures (T=-40°C). In the presence of high H2S 

content in the gas, the risk of brittle failure can be increased due to the effect of hydrogen on steel toughness. In this 

paper the influence of hydrogen and low temperature on mechanical properties of two pipeline materials, F22 low 

alloy and X65 micro-alloyed steels, is studied. Steels have been hydrogen charged by means of an electrochemical 

method: diffusible hydrogen content of steels is in the range 0.6 to 2 ppm. Charpy and J-R curves tests were carried 

out in the range from room temperature to T=-120°C. Hydrogen affects mechanical properties of the tested materials, 

mainly reducing fracture toughness in J integral tests, while little influence has been observed in CV tests. Fracture 

surface examination confirms the results of mechanical testing. 
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1. Introduction 

Carbon steel and low alloy steel are commonly used in Oil and Gas industry when general corrosion 

due to the presence of CO2 and H2S is considered acceptable to stand the design life. However, when sour 

condition applies, the occurrence of Sulphide Stress Cracking (SSC) in the presence of H2S on susceptible 

materials must be investigated [1]. Furthermore, when very low temperatures, as below T=-40 °C, are 

 

* Corresponding author. Tel.: +39 0223993151. 

E-mail address: fabio.bolzoni@polimi.it 

doi:10.1016/j.proeng.2011.04.533

Procedia Engineering 10 (2011) 3226–3234

1877-7058 © 2011 Published by Elsevier Ltd. 
Selection and peer-review under responsibility of ICM11

Open access under CC BY-NC-ND license.

© 2011 Published by Elsevier Ltd. 
Selection and peer-review under responsibility of ICM11 

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


P. Fassina et al. / Procedia Engineering 10 (2011) 3226–3234 3227

also present, as in most recent oil&gas fields, a synergistic negative effect may result from the 

combination of sour conditions and low temperatures on the mechanical behaviour of the used materials. 

Hydrogen charging of steels results in a complex interaction between solute hydrogen atoms and all the 

micro-structural components in the material. Such a complex correlation causes scatter in the 

experimental results and sometimes contradictory evidences. Nevertheless, decrease of impact strength, 

ductility (reduction in area in tensile tests) and fracture toughness of pipeline and pressure vessel steels 

has been reported in the literature [2][3][4]. Hydrogen can also affect the fatigue limit [5]. 

To reproduce the combined effect of hydrogen in the metals and low temperature, Charpy toughness 

and J-integral tests were carried out on specimens charged with hydrogen. Two very "clean" materials 

produced through a normal commercial production line were used for the purpose.  

 

2. Mater ials 

Experimental activities involved seamless pipes in quenched and tempered conditions manufactured 

with: 

 2  Cr 1 Mo steel, ASTM A182 F22 (outside diameter D=320 mm, wall thickness  t=65 mm); 

 Micro-alloyed C-Mn steel, API 5L X65 grade (D=323 mm, t=46 mm). 

 

The F22 [6] pipe is a Q&T pipe from ingot casting-forging-piercing-hot rolling-quench and tempering 

production route. X65 [7] grade pipe is a Q&T pipe from conventional billet casting-piercing-hot rolling-

quench and tempering operations. Both materials are for sour service use, so that they underwent through 

all the required qualifications. In Table 1 the chemical compositions of the selected materials are reported. 

X65 steel microstructure is equiaxed and acicular ferrite with finely dispersed carbides. The 

microstructure is rather homogeneous. Inclusion shape is round. F22 steel microstructure is typical of 

tempered lath martensite, i.e., elongated ferrite grains with finely dispersed carbides; the microstructure is 

rather homogeneous; inclusion density is very low; inclusion shape is round. Mechanical properties have 

been evaluated at room temperature. Results are collected in Table 2. 

Table 1. Chemical compositions 

Material C Mn Cr Mo Ni Nb V Ti 

F22 0.14 0.43 2.25 1.04 0.08 0.023 <0.01 <0.01 

X65 0.11 1.18 0.17 0.15 0.42 0.023 0.06 <0.01 

Table 2. Mechanical properties  

Material ys (MPa) ts (MPa) E (MPa) A (%) 

F22 468±2.7 592±2.1 206500±1500 20±2.5 

X65 511±6.7 609±5.7 206208±6049 21±6.5 
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3. Exper imental procedure 

A large number of experimental tests were carried out to characterize the mechanical behaviour of the 

uncharged and hydrogen charged steels, in terms of:  

 Ductile-brittle transition curve, obtained by impact test using standard V notched Charpy specimens; 

 Fracture toughness by J-R curves using CT specimens.  

hydrogenated, by the electrochemical method.  

3.1. Electrochemical Hydrogen Charging 

The electrochemical method proposed for hydrogen charging has the primary purpose to obtain 

controlled and reproducible charging conditions in an environment that can be prepared, handled and 

disposed in a simple and safe way. Hydrogen content charged into thick steel specimens should be 

comparable to that found in pipeline steels after a long service time. The basis for the setup of the 

hydrogen charging method was the work of Newman and Shreir [9]. The procedure finally setup in our 

laboratories for electrochemical hydrogen charging has been: 

 Solution: 0.4 mol L
-1

 of CH3COOH + 0.2 mol L
-1

 of CH3COONa, buffered at pH 4.3 and with 600 

ppm of sulfide as S
=
 from hydrated sodium sulfide 

 complete de-oxygenation with pure N2 

 room temperature, T = 25 ± 3 °C 

 current density equal to 0.5 mA/cm
2
 for 20 hours 

In order to avoid hydrogen release due to diffusion during the time interval from charging to 

mechanical testing the charged specimens were immerged into liquid nitrogen at T=-196 °C or coated 

with FCC metals (Ni and Cu).  

An approximate estimation of the diffusible hydrogen content of the charged specimens has been  

made by using the hot glycerol method. This method is very simple and quick, then it is suitable for a 

routine control but underestimate the actual hydrogen content. A control measurement of the total 

hydrogen content was performed in external laboratories, using a commercial LECO hydrogen analyser. 

The two methodologies were in general agreement; diffusible hydrogen content of the charged specimens 

is in the range 0.6-2 ppm. The details of the experiments are reported in the paper [10]. 

3.2.  Charpy tests 

Charpy tests were carried out on as received materials and after hydrogenation, according to ISO 148 

[11]. The specimens were cooled down, by an ethanol-liquid nitrogen bath kept at the test temperature. 

Two methods were followed to define the brittle-ductile transition temperature (BDTT): by the fracture 

appearance transition temperature (FATT) and by determining the temperature in correspondence of the 

energy equal to 27J. The FATT is typically defined as the temperature at which the fracture surface 

contains the 50% of brittle area.  
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3.3.  F racture mechanics tests 

Fracture mechanics tests were carried out on standard CT specimens, following the ASTM 1820 [12]. 

Thickness of the specimen is a very important parameter for the test. Large thickness is needed to have a 

plane strain behavior of the material, on the other hand small thickness allows easier and faster charging 

processes that depend on the surface/volume ratio. In designing the specimen both those requirements 

were taken into account and thickness was set equal to B=20mm. Side grooves were machined on the 

specimens, along the crack propagation direction, in order to reduce the plane stress condition. The tests 

have been performed at different controlled temperatures by using an environmental chamber fed with 

liquid nitrogen. To check the specimen temperature in the bulk, before and during tests, a small hole was 

machined in the specimens and a T-type thermocouple was welded in, without interfering with the test. 

The details of the experiments are reported in the paper [8]. All the specimens, after the hydrogen charge, 

were maintained in liquid nitrogen, while some specimens were kept in air at room temperature for 24h to 

allow some diffusible hydrogen to escape from the specimen and verify if there is a permanent effect of 

hydrogen charge.  

4. Results and discussions 

The effect of the hydrogen charge is evident both for F22 and X65 steels, and this effect is particularly 

evident in the slower J-integral tests. 

4.1. Charpy tests 

Figs. 1 and 2 show the Charpy impact energy values and the percentage of brittle area as a function of 

temperature for F22 and X65 steel respectively. The impact energy values of uncharged F22 specimens 

are almost constant to a temperature equal to T=-100°C (see Fig. 1a). The same results are achieved from 

the percentage of brittle area diagram (see Fig. 1b): the brittle area is between 5-10%, when test 

temperature is equal to T=-100°C. The energy values drop suddenly in correspondence of T=-110°C. The 

transition zone of impact energy of hydrogenated specimens is larger and the energy values are more 

scattered. The BDTT of hydrogenated F22 specimens increases of about 30°C with respect of the non-

hydrogenated specimens, if it is considered the value in correspondence of impact energy 27J, as in 

ISO148. By considering, on the contrary, the FATT value the increase is in the range of 20°C. Upper 

shelf energy is slightly decreased from 270 to 230 J.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. (a) Impact energy and (b) percentage of brittle area vs. temperature for non-hydrogenated and hydrogenated F22 steel 

(a) (b) 
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Fig. 2. (a) Impact energy and (b) percentage of brittle area vs. temperature for non-hydrogenated and hydrogenated X65 steel 
 

X65 steel hydrogenated specimens show a slightly different behaviour, if compared to the uncharged 

material one. The transition was a bit more localized. An increase of BDTT of about 10°C can be 

appreciated after hydrogenation, using both the FATT and the 27J criterion. The upper shelf energy is 

slightly decreased from 240 to 220J. An important aspect is the more scattered results for both energy and 

brittle area values of hydrogenated samples compared to those of uncharged material. Results indicated 

that both F22 and X65 steel behave in a similar way and in all cases a slight increase of the transition 

temperature was found. 

4.2.  J-integral tests 

Fig. 3(a) and 3(b) shows the measured values of JQ, vs. temperature for F22 steel and X65 steel 

respectively, with and without hydrogen. 

The effect of the hydrogen charge is more evident if the toughness fracture J-R curves are considered. 

When material is charged with hydrogen, in fact, JQ values decrease significantly in both steels with 

respect to the values obtained in the uncharged conditions. Fig. 3 shows the JQ values obtained by non-

hydrogenated F22 specimens: the values are larger than 900 kJ/m
2
 at a temperature of T=-100°C. During 

the tests the cracks never propagate in an unstable way and also the stable crack propagation is very 

small. The plastic zone at the crack tip is large and the crack tip blunts without propagation. The JQ values 

obtained by the hydrogenated specimens are significantly lower and almost constant (JQ 150 kJ/m
2
) to 

the room temperature. Fig. 4(a) shows the JQ values divided in the elastic, Jel, and plastic, Jpl, components: 

it is evident that the elastic component is almost constant; on the contrary, the presence of hydrogen 

drastically reduces the plastic one. The presence of hydrogen modifies the fracture mode of the material: 

the plastic zone is smaller and the crack propagation is larger.  

In Fig. 5 the fracture surfaces of F22 specimens are shown. During the tests the cracks, in both 

specimens, did not propagate in an unstable way. The specimens were heat-tinted in order to mark the 

stable crack propagation phase, which is visible on the crack surfaces. It is possible to notice that the 

stable propagation of the non-hydrogenated specimen at T=-100°C is clearly lower than the values found 

in the hydrogenated specimen at T=-90°C.  

Some specimens (green symbols) were kept in air at room temperature before the J tests: it is evident 

that, even in this case, the JQ values are lower than the ones of the non-hydrogenated specimens. The aim 

of these last tests is to put in evidence the role played by the presence of trapped hydrogen in the lattice. 

(a) (b) 
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As a matter of fact we can expect that large amount of diffusible hydrogen can escape from the specimen 

in 24 hours being this time almost the same of the charging one, that is equal to 20 hours.  

Similar considerations are valid for X65 steel: Fig. 3(b) shows that the JQ values of the hydrogenated 

specimens are significantly lower the non-hydrogenated ones and are almost constant (JQ 90 kJ/m
2
) with 

the temperature. Fig. 4(b) shows the JQ values divided in elastic and plastic components: the presence of 

hydrogen prevents the plasticization of the material. 

 

 

 

 

 

Fig. 3. JQ values obtained by non-hydrogenated and hydrogenated specimens of F22 (a) steel and X65 (b) 

 
 

Fig. 4. Jel and Jpl components obtained by non-hydrogenated and hydrogenated specimens of F22 steel (a) and X65 (b). 

 

 

 

 

 

 

 

Fig. 5. Stable crack propagation for F22 specimens: (a) uncharged specimen, T = -100°C, JQ = 890 KJ/m2, a = 0.5mm; (b) Charged 

specimen, T = -90 °C,  Jq = 179 kJ/m2, a = 2.5 mm 

(a) (b) 

(a) (b) 

(a) (b) 



3232  P. Fassina et al. / Procedia Engineering 10 (2011) 3226–3234

4.3. Fracture surface examination  

In Fig. 6 the behaviour of X65 steel without hydrogen is shown: fatigue crack growth, crack tip 

blunting, ductile crack extension and unstable crack propagation are visible. Ductile crack extension 

generally is not uniform along the fatigue crack tip and sometimes is a little more extended near the edges 

where stress triaxiality is lower even in the presence of side groves. Ductile fracture exhibits ductile 

dimples nucleated by inclusions or precipitates. Finally unstable crack propagation shows typical aspect 

any effect on brittle fracture nucleation even when they can be occasionally found on the fracture surface. 

In the hydrogen charged specimen, t

at low magnification, is similar to an intergranular fracture, see Fig. 7(a), but actually it is due to a mixed 

fracture mechanism, i.e., a brittle mode in the central part of each cell and a ductile mode on the border.  

-

very often nucleated by inclusions, Fig. 7(b). The dimension of these cells can be reasonably estimated in 

the range 30÷125 m, much larger than the ferritic grain size that is in the order of few microns. The 

appearance and absorbs most of the fracture energy in this stage, much lower than the one of pure ductile 

fracture. Finally unstable crack propagation shows the typical cleavage mode without significant 

differences respect to not hydrogenated specimens. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Fractographic analysis of X65 specimen without hydrogen after J integral test 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7. Fractographic analysis of X65 specimen charged with hydrogen after J integral test. 
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In specimens without hydrogen, F22 steel has a more extended blunting and it appears very flat. 

Ductile crack extension shows very big and flat dimples surrounded by small ones not well developed. 

Fracture surface of hydrogenated specimens of F22 steel displays the same general morphology of X65 

with some differences: the surface ratio of cture is higher, i.e., the ductile 

component of the fracture is higher, thus justifying the higher toughness of F22; on the other hand the 

mean dimension of the cells is in the range 35÷150 m, slightly higher than the one measured on X65. 

5. Conclusions 

In this paper, the mechanical behavior of two hydrogenated steels was investigated. Both steels, a 

forged low alloy steel named F22 and a microalloyed steel named X65, are widely used in oil&gas 

pipelines. The conclusions can be summarized as follows: 

 An electrochemical hydrogen charging technique was developed; hydrogen content in the specimens 

was measured between 0.6  2 ppm; hydrogen diffusion outside the specimen was prevented by means 

of putting specimens in liquid nitrogen or coating with FCC metal. 

 A suitable procedure was applied for testing of hydrogen charged specimens in order to obtain 

mechanical parameters such as: Charpy impact energy and toughness varying test temperature from 

room temperature to - 120°C, without any remarkable hydrogen loss in the material.  

 A drastic change in mechanical properties of the hydrogenated material has been shown; the effect, as 

expected, was remarkable in those tests that require a longer time to be performed, such as J integral 

tests and lower in fast fracturing impact tests.  

 The characteristic toughness value, JQ, shows an evident loss in mechanical performances if compared 

to the uncharged one. In particular the material loses the ability to plasticize under high loads and 

stresses and its behaviour shifts to those of medium tough steels.  

 Hydrogen effect is not temperature dependent and JQ values, experimentally obtained from charged 

specimens, are very similar while varying test temperature: for F22 steel JQ
2 

and for X65 

steel JQ
2
; these values, even if largely influenced by the hydrogen, are always sufficiently 

high.  

 The morphology of fracture surfaces was influenced by the hydrogen charging: the stable crack growth 

orphology which is due to a mixed fracture mechanism, i.e., a hydrogen 

induced  brittle mode in the central part of each cell and a ductile mode on the border.  

 Toughness reduction was noticed also on specimens that have been left at room temperature and open 

environment for 24h after hydrogen charging, to allow hydrogen diffusion outside the specimen. It 

resulted clear then, that a certain amount of hydrogen introduced in the specimens was trapped inside 

the material. 
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