8 research outputs found

    BayesSPsurv: An R Package to Estimate Bayesian (Spatial) Split-Population Survival Models

    Get PDF
    Survival data often include a fraction of units that are susceptible to an event of interest as well as a fraction of “immune” units. In many applications, spatial clustering in unobserved risk factors across nearby units can also affect their survival rates and odds of becoming immune. To address these methodological challenges, this article introduces our BayesSPsurv R-package, which fits parametric Bayesian Spatial split-population survival (cure) models that can account for spatial autocorrelation in both subpopulations of the user \u27s time-to-event data. Spatial autocorrelation is modeled with spatially weighted frailties, which are estimated using a conditionally autoregressive prior. The user can also fit parametric cure models with or without nonspatial i.i.d. frailties, and each model can incorporate time-varying covariates. BayesSPsurv also includes various functions to conduct pre-estimation spatial autocorrelation tests, visualize results, and assess model performance, all of which are illustrated using data on post-civil war peace survival

    Bayesian Spatial Split-Population Survival Model with Applications to Democratic Regime Failure and Civil War Recurrence

    No full text
    The underlying risk factors associated with the duration and termination of biological, sociological, economic, or political processes often exhibit spatial clustering. However, existing nonspatial survival models, including those that account for “immune” and “at-risk” subpopulations, assume that these baseline risks are spatially independent, leading to inaccurate inferences in split-population survival settings. In this paper, we develop a Bayesian spatial split-population survival model that addresses these methodological challenges by accounting for spatial autocorrelation among units in terms of their probability of becoming immune and their survival rates. Monte Carlo experiments demonstrate that, unlike nonspatial models, this spatial model provides accurate parameter estimates in the presence of spatial autocorrelation. Applying our spatial model to data from published studies on authoritarian reversals and civil war recurrence reveals that accounting for spatial autocorrelation in split-population models leads to new empirical insights, reflecting the need to theoretically and statistically account for space and non-failure inflation in applied research

    World Congress Integrative Medicine & Health 2017: part two

    No full text

    World Congress Integrative Medicine & Health 2017: part two

    No full text
    corecore