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BayesSPsurv: An R Package to Estimate
Bayesian (Spatial) Split-Population
Survival Models
by Brandon Bolte, Nicolás Schmidt, Sergio Béjar, Nguyen Huynh, Bumba Mukherjee

Abstract Survival data often include a fraction of units that are susceptible to an event of interest
as well as a fraction of “immune” units. In many applications, spatial clustering in unobserved risk
factors across nearby units can also affect their survival rates and odds of becoming immune. To
address these methodological challenges, this article introduces our BayesSPsurv R-package, which
fits parametric Bayesian Spatial split-population survival (cure) models that can account for spatial
autocorrelation in both subpopulations of the user’s time-to-event data. Spatial autocorrelation is
modeled with spatially weighted frailties, which are estimated using a conditionally autoregressive
prior. The user can also fit parametric cure models with or without nonspatial i.i.d. frailties, and
each model can incorporate time-varying covariates. BayesSPsurv also includes various functions to
conduct pre-estimation spatial autocorrelation tests, visualize results, and assess model performance,
all of which are illustrated using data on post-civil war peace survival.

Introduction

Conventional survival models have been applied to analyze time-to-event data across several academic
disciplines, but these models rely on two core assumptions that are not always tenable. The first is
that all units, including right-censored observations, will eventually experience the event of interest.
In many applications, however, some fraction of subjects that are “immune” or “cured” may never
experience the event (Maller and Zhou, 1996; Peng and Taylor, 2014; Beger et al., 2017). A clinical
study of obesity on human death rates can employ a standard survival model because all subjects will
eventually die, but a study on vaccine effectiveness will likely assume that some fraction of the treated
population will become immune while others may respond differently and remain uncured. To account
for both subpopulations, scholars have developed a class of split-population (SP) survival models
that probabilistically separate the immune fraction from the units that are susceptible to the event of
interest and then estimate the conditional hazard of survival among the latter units (Cai et al., 2012;
Beger et al., 2018; Box-Steffensmeier and Zorn, 1999; Box-Steffensmeier and Jones, 2004). The second
assumption of conventional survival models is that each observation is conditionally independent
after controlling for covariates. This assumption is violated if spatially clustered units share common
unobserved features that influence their baseline risk of experiencing an event (Darmofal, 2009; Taylor
and Rowlingson, 2017). If spatial autocorrelation matters for process survival and/or the probability
of being immune to an event, ignoring it can lead to biased parameter estimates.

Although there are numerous methods for dealing with spatially autocorrelated time-to-event
data (e.g., Li and Ryan, 2002; Banerjee et al., 2003; Henderson et al., 2002; Zhou et al., 2020), these
spatial survival models do not differentiate between at-risk and immune observations. Conversely,
existing SP survival models either ignore spatial autocorrelation altogether or only account for it
in the survival stage (Banerjee and Carlin, 2004). We present the BayesSPsurv (Bolte et al., 2021b)
R-package (available at https://CRAN.R-project.org/package=BayesSPsurv), which has the power
to overcome these limitations as well as the flexibility for researchers to model spatial clustering in their
survival data however they choose to define it. In particular, BayesSPsurv allows the user to estimate
parametric Bayesian Spatial split-population survival (cure) models with spatial frailties in both the
model’s split and survival stages. These models account for spatial clustering in the immune and
at-risk fractions of the data. The package also includes functions and code for pre-estimation spatial
autocorrelation diagnostics, visualizing results, simulating multiple Markov chains, and implementing
Markov Chain Monte Carlo (MCMC) estimation routines for SP survival models with independent
(exchangeable) or no random effects. The user can also include time-varying covariates in either stage.
In the next section, we outline previous work on SP and spatial survival models, including existing
packages and their limitations. We then formally develop the Pooled, Exchangeable, and Spatial
Bayesian SP survival models before describing the various functions available in the BayesSPsurv
package. We demonstrate these functions using replication data from a published study on the survival
of post-civil war peace.
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Background and other R-packages

Scholars have identified at least two sources of conditional heterogeneity in survival data that hasve
been separately addressed. The first occurs when a subset of the units in the data are immune from
experiencing a “failure” event, which violates the assumption that even right-censored observations
experience the event of interest (Box-Steffensmeier and Zorn, 1999; Box-Steffensmeier and Jones, 2004;
Beger et al., 2017). Cure rate or split-population (SP) survival models account for this immune fraction
by first estimating the probability that right-censored units are immune from an event in a “split-stage”
and then the time until at-risk censored and non-censored units experience the event. Recent work
has extended these models to include i.i.d. frailties (Peng and Taylor, 2011), time-varying covariates
(Beger et al., 2017), and account for random right-censoring (Patilea and Van Keilegom, 2020). Split-
population survival models have been used to study phenomena, ranging from the survival of breast
cancer patients (Wang et al., 2005), criminal recidivism (Schmidt and Witte, 1989), the risk of coups
(Beger et al., 2017), and parasite-induced mortality in river salmon (Ray et al., 2014).

Separately, conventional survival models have been extended to account for spatial autocorrelation
among nearby units (Banerjee et al., 2003; Taylor and Rowlingson, 2017; Zhou et al., 2020). These
models relax the assumption of spatial independence by incorporating spatially weighted frailties
into the survival model’s baseline hazard function. This allows for the possibility that adjacent units
share unmodeled risk factors that influence their underlying propensities for experiencing a failure
event. Apart from recent advances in modeling spatial frailties in different survival frameworks
(e.g. Diva et al., 2008; Zhou et al., 2020), spatial survival models have been applied to analyze, for
example, geographically referenced data on leukemia survival (Henderson et al., 2002), position
announcements by U.S. House members (Darmofal, 2009), prostate cancer (Zhou et al., 2020), and fire
service response times (Taylor and Rowlingson, 2017). Despite these considerable methodological
developments, far less attention has been dedicated to accounting for spatial autocorrelation in SP
survival settings. This is surprising because spatial autocorrelation between units may influence their
probability of being immune and the survival rate among the units at risk of experiencing the failure
event simultaneously. Banerjee and Carlin (2004) develop Bayesian spatial cure models but focus on
modeling spatial autocorrelation in the survival stage using a conditionally autoregressive (CAR) prior.
In fact, these authors emphasize that future research must “include covariates and spatial random
effects as regressors in the cure rate portion of the model, instead of just the log-relative risk portion”
(274).

In line with these trends in the literature, some R packages fit standard and split-population
survival models but do not allow for the incorporation of spatial information. The survival package
(Therneau, 2020) fits parametric and semiparametric Cox survival models via MLE, whereas dynsurv
(Wang et al., 2020) fits the Cox Proportional Hazards (PH) model with dynamic coefficients using
MCMC methods. Conventional semi-parametric cure models can be estimated via MLE with the
smcure (Cai et al., 2012) or nltm (Garibotti et al., 2019) package. The flexsurvcure (Amdahl, 2020) pack-
age fits parametric mixture and non-mixture cure models for time-to-event data, and the spduration
package fits parametric SP survival models with time-varying covariates (Beger et al., 2018).

A small handful of packages allow the user to incorporate spatial information into their survival
models, but never in split-population settings. The BayesX package (Umlauf et al., 2019) and its
associated interface to R R2BayesX (Belitz et al., 2017) fit spatial survival models and structured
additive regression models with spatial frailties. The spBayesSurv package (Zhou and Hanson, 2020)
fits several Bayesian survival models with spatial frailties that can be formulated on a PH, proportional
odds, or AFT scale, all of which can include time-varying covariates. The spatsurv package also fits
Bayesian spatial survival models, including a PH model that permits users to incorporate Gaussian
process frailties (Taylor and Rowlingson, 2020). Beyond R, WinBUGS and GeoBUGs code has been
developed to fit, for instance, survival and non-mixture cure models with spatial frailties (Banerjee
et al., 2003, 2004; Thomas et al., 2004).

To our knowledge, our BayesSPsurv package is the first to allow users to fit parametric split-
population survival models with not just time-varying covariates but also spatial frailties in both
stages. The frailties in the parametric Bayesian spatial SP model are estimated using the CAR prior
approach (Besag et al., 1991; Bernardinelli et al., 1995; Banerjee et al., 2003; Banerjee and Carlin,
2004). BayesSPsurv also includes functions and routines coded in C++ to fit nonspatial parametric
SP survival models with exchangeable frailties in the model’s split and survival-stage equation and
without any frailties. Statistical inference of the models in BayesSPsurv is conducted via combined
MCMC techniques that require little input from users. Our package and supplemental code also
provide functions to implement spatial autocorrelation tests, produce country-level adjacency matrices,
generate and compare multiple Markov chains, assess convergence, and conduct model comparison.
Before outlining the functionality of the package in greater detail, we turn to briefly develop each of
the three included Bayesian split-population survival models.
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The Bayesian (Spatial) split-population survival model

Model development

Define i = {1, 2, ...N} for the units that may fail or experience an event of interest in a continuous-
time survival dataset. Let f (t) and F(t) represent the probability density function and cumulative
distribution function. The survival distribution is S(t) = 1 − F(t), and the hazard rate is h(t) = f (t)

S(t) .

Some units will fail during the time period under observation (C̃i = 1), while others do not and are
“censored” (C̃i = 0). The general likelihood of the conventional survival model in which all units
eventually experience the event of interest is

N
∏
i=1

[ f (ti)]
C̃i [S (t)]1−C̃i . (1)

Suppose that the survival data includes two subpopulations: an “at-risk ” fraction that can fail and an
“immune” fraction that will not experience the (failure) event of interest (Maller and Zhou, 1996; Yin
and Ibrahim, 2005; Beger et al., 2017). When presented with this data generation process, researchers
typically employ split-population survival (cure) models with or without unit-specific frailties to
simultaneously estimate the probability of observations being in the immune fraction and the effect of
covariates on the hazard of survival among the at-risk fraction (Maller and Zhou, 1996; Lu, 2010; Peng
and Taylor, 2014).

To understand these models in more detail, consider the split-population survival model for the
duration t that splits the sample into an at-risk and an immune fraction. Let αi = Pr(Yi = 1) be the
probability with which units enter the immune fraction. αi can be estimated via a binary response
function and is defined for the logit case as:

αi =
exp (Ziγ + Vi)

1 + exp (Ziγ + Vi)
, (2)

where Zi are p2-dimensional covariates, γ the parameter vector in Rp2 , and Vi ∼ N(0, σ2) are the
nonspatial i.i.d unit-specific frailties (random effects). Equation 2 is the split-population model’s split-
stage equation, where the unit-specific frailties Vi, which are each independent of other individual
random effects, account for unobserved heterogeneity that influences probability αi. Let Wi ∼ N(0, σ2)
denote the nonspatial i.i.d unit-specific frailties that capture the possibility that some units are at
different risks of experiencing the event of interest due to unobserved factors. The proportional
hazards function of the SP survival model with nonspatial, unit-specific frailties is

h (ti|Xiβ, Wi) = h0 (ti)ωi exp (Xiβ) = h0 (ti) exp (Xiβ + Wi) , (3)

where h0(ti) is the baseline hazard (e.g., Weibull, log-logistic), log ωi = Wi, Xi is the p1-dimensional
covariates, and β the parameter vector in Rp1 . We focus on incorporating unit-specific frailty terms
generally because they are most commonly used in the social sciences. However, our approach
could plausibly be extended to a shared frailty framework if the researcher believes that the frailties
occur in clusters such that within-cluster frailties are correlated while frailties between clusters are
independent.

Suppose, however, that the survival data with the two aforementioned subpopulations should
be fit with time-varying covariates. We can re-define this data with unique “entry time” duration as
t0 and “exit time” as duration t for each period at which an observation is observed. Let t0ij denote
unit i’s elapsed time since inception until the beginning of time period j, tij the elapsed time since that
unit’s inception until the end of period j, and C̃ij = 1 if that unit fails or is censored (C̃ij = 0) at tij. The

probability of survival up until period j is now S(t0) = 1 − F(t0) where F (t0) =
∫ t0

0 f (t0). In this
case, both subpopulations contribute to the log-likelihood of the split-population survival model with
nonspatial i.i.d frailties as:

ln L = ∑N
i=1

{
C̃ij ln

[(
1 − αij

) f (tij |Xij β,Wi)
S(t0ij |Xij β,Wi)

]
+

(
1 − C̃ij

)
ln

[
αi + (1 − αi)

S(tij |Xij β,Wi)
S(t0ij |Xij β,Wi)

]}
, (4)

where the “split-stage” equation is αij =
exp(Zijγ +Vi)

1+exp(Zijγ +Vi)
. Vi and Wi are the nonspatial frailties. The

model’s survival stage estimates the probability of survival prior to the event of interest conditional
upon being at-risk for that event given covariates Xij and the baseline hazard function. If Vi = Wi = 0,
then (4) defines the log-likelihood of the "Pooled" SP survival model (without unit-specific frailties)
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with time-varying covariates (Ibrahim et al., 2001; Lu, 2010). However, if unobserved unit-specific
heterogeneity influences the probability of immunity or survival time, it can be accounted for with the
split and survival-stage frailty terms (Vi and Wi). In a Bayesian split-population survival framework,
these frailties are incorporated into each stage of the model using the exchangeable normal prior,

Wi ∼ N (0, 1/τ) and Vi ∼ N (0, 1/τ) , (5)

with τ as the precision parameter (Banerjee et al., 2003; Banerjee and Carlin, 2004). The prior in (5) is
induced by treating each specified unit as exchangeable rather than assigning weights corresponding
to each unit’s spatial relationship to one another (Bernardinelli and Montomoli, 1992; Darmofal, 2009).
This Exchangeable split-population survival model is appropriate if each unit’s frailty is presumed to
be independent of other individual random effects. Geographically, for instance, this means that the
influence of each unit-specific frailty on that unit’s probability of being immune or its risk propensity
is completely unrelated to the neighboring units’ frailties unobserved effects.

Suppose, however, that independence among the frailties cannot be assumed—that is, that the
frailties exhibit spatial autocorrelation or clustering that influences each units’ propensity for being
immune to an event of interest and their survival time if they are not immune. In a Bayesian split-
population survival model, the assumption of spatial independence is relaxed by assigning spatial
weights to the unit-specific frailties in the model’s split and survival stage and then statistically
incorporating these spatially weighted frailties via the conditionally autoregressive (CAR) prior
approach (Besag et al., 1991; Banerjee et al., 2003). The CAR prior accounts for spatially autocorrelated
frailties by allowing the frailties to be spatially autocorrelated across geographically adjacent units.

To understand how the CAR prior is applied, first note that spatial data often take the form of a
lattice in which a continuous spatial surface is divided into a grid of units such as counties, districts, or
countries. The spatially weighted frailties are constructed by defining the relevant spatial relationship
among adjacent units (this could, for example, be geographic distance or contiguity) in an adjacency
matrix A with elements aii′ . Each element aii′ in A is given a weight of 1 if units i and i′ are “neighbors,”
and 0 if they are not. Once these spatial weights are defined via the matrix A, this information is then
incorporated into the CAR prior, which permits us to model spatially dependent frailties between
these contiguous units. To employ the CAR prior approach in a Bayesian SP survival framework,
the frailties Vi are collected into the vector V = {V1, ...., VN}, and Wi into W = {W1,....,WN}. Separate
CAR priors are then employed for V and W, which implies the following model structure:

V|λ ∼ CAR (λ) and W|λ ∼ CAR (λ) . (6)

λ is the precision parameter (Besag et al., 1991; Banerjee and Carlin, 2004). The CAR(λ) prior for V
and W has a joint distribution in each case that has been formally characterized by scholars (Banerjee
et al., 2003, 126).

The resulting conditional distributions of the spatial frailties for V and W are

Vi|Vi′ ̸=i ∼ N
(
Vi, 1/ (λmi)

)
, Wi|Wi′ ̸=i ∼ N

(
Wi, 1/ (λmi)

)
. (7)

Wi = m−1
i ∑i′ adj i Wi′ and Vi = m−1

i ∑i′ adj i Vi′ . Wi and Vi are the averages of the neighboring Wi′ ̸=i
and Vi′ ̸=i, respectively, where i′ adj i denotes that i′ is adjacent to i given A, and mi is the number
of these adjacencies (Bernardinelli and Montomoli, 1992, 989; Thomas et al., 2004; Banerjee et al.,
2003). Incorporating the spatial information in A in this way accounts for the possibility that spatially
proximate units share common unmodeled factors that influence their probability of being immune
or their survival time before experiencing the event of interest. Using this CAR prior approach to
address spatial autocorrelation, the Spatial split-population survival model’s log-likelihood is defined

by substituting V = {Vi} and W = {Wi} in equation 4 (where αij =
exp(Zijγ ,V)

1+exp(Zijγ ,V)
is the split-stage

equation).

The log-likelihood of the Pooled (non-frailty), Exchangeable (nonspatial frailty), and Spatial split-
population (SP) survival models are compatible with any survival distribution. The BayesSPsurv
package, however, supports MCMC estimation of these models for the Weibull and log-logistic
distributions. Our empirical application below focuses on the Weibull survival distribution. The
density, survival, and hazard rate in the Weibull case are

f
(

tij|ρ, θ
)
= ρθ

(
θtij

)ρ−1
exp

(
−

(
θtij

)ρ)
S
(

tij|ρ, θ
)
= exp

(
−

(
θtij

)ρ)
and h

(
tij|ρ, θ

)
= ρθ

(
θtij

)ρ−1
,

(8)
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where θ = exp
(

Xijβ, W
)

for the Spatial, θ = exp
(

Xijβ + Wi

)
for the Exchangeable, and θ =

exp
(

Xijβ
)

for the Pooled split-population Weibull model. The density, survival function and the
hazard rate for the log-logistic case is defined in Bolte et al. (2021a).

Bayesian inference

Following standard practice for Bayesian inference (Carlin and Louis, 2000), we assign the multivariate
normal (MVN) prior to β = {β1, ..., βp1} and γ = {γ1, ..., γp2}, and the Gamma prior for ρ with shape
and scale parameters aρ and bρ for each of the three Bayesian split-population survival models in the
BayesSPsurv package.

ρ ∼ Gamma
(
aρ, bρ

)
, β ∼ MVNp1

(
µβ, Σβ

)
, γ ∼ MVNp2 (µγ, Σγ)

Σβ ∼ IW
(

Sβ, νβ

)
; Σγ ∼ IW (Sγ, νγ) ,

(9)

where aρ, bρ, Sβ, νβ, Sγ, νγ are the hyperparameters. We use Bayesian hierarchical modeling to
estimate Σβ and Σγ employing the Inverse-Wishart (IW) distribution when using the MVN (a weakly
informative) prior. For Bayesian MCMC estimation of the Spatial SP survival (Weibull) model, we
assign the hyperprior p(λ) to λ given the CAR prior approach. Specifically, we assign the Gamma
hyperprior λ ∼ Gamma(aλ, bλ) for λ (Banerjee and Carlin, 2004; Darmofal, 2009).1 To estimate the
Exchangeable SP Weibull model, we assign the (multivariate) normal prior for the model’s split
and survival-stage frailties (Vi, Wi), and the priors defined in (9) for β, γ,and ρ. To identify the
Exchangeable and Spatial SP models’ intercepts, we impose the constraint that the frailties sum to
zero (∑i Vi = 0 and ∑i Wi = 0).

The joint posterior distribution of the Bayesian Spatial SP survival model with time-varying
covariates—our main model of interest—is

π
(

β, γ, ρ, W, V, λ, Σβ, Σγ|C, X, Z, t, t0, γ
)

∝ L (β, γ, ρ, W, V|C, X, Z, t, t0)

π (W|λ)π (V|λ)π
(

β|µβ, Σβ

)
π (γ|µγ, Σγ)π (ρ)π (λ)π

(
Σβ

)
π (Σγ) ,

(10)

where L (β, γ, ρ, W, V|C, X, Z, t, t0) is defined in (4) with V = {V1, ...., VN} and W = {W1,....,WN}. The
density, survival function, and hazard rate for this likelihood is given by the Weibull (or log-logistic)
distribution in our R-package. π (W|λ) and π (V|λ) are defined via their respective conditional

distributions in (7). π
(

β|µβ, Σβ

)
, π (γ|µγ, Σγ), and π (ρ) are from (9), π

(
Σβ

)
and π (Σγ) are from

(10). π (λ) is the Gamma hyperprior for the Spatial SP survival model. From (10), we can define the
joint posterior distribution of the time-varying (i) Exchangeable SP survival model by incorporating
the frailties Vi and Wi (instead of W, V, and their CAR priors) given by (5) and (ii) Pooled SP survival
model by excluding frailty terms.

The three split-population survival models in BayesSPsurv are each estimated with an MCMC
algorithm for Bayesian inference. Because closed-forms for the posterior distributions of β, γ and ρ are
not available, these parameters in each model are updated in the MCMC algorithm via slice-sampling
(with stepout and shrinkage) from their respective full conditional distribution. The closed form of

the full conditional distributions (e.g., π
(

Σβ|β
)

and π (Σγ|γ)) and details about slice-sampling is

provided in Bolte et al. (2021a).2 Further, because the closed-forms for the posterior distributions
of λ, W, and V are not available for the Spatial split-population survival model, our MCMC algo-
rithm incorporates Gibbs Sampling for estimating λ. Our MCMC update scheme then employs
the Metropolis-Hastings algorithm for estimating V given λ and then uses the Metropolis-Hastings
algorithm to estimate W given λ.3 In the Exchangeable SP survival model, the nonspatial i.i.d frailties
Vi and Wi are updated via Metropolis-Hastings, while the Pooled SP model excludes frailty terms. The
MCMC update scheme to fit each model in BayesSPsurv are described in detail in Bolte et al. (2021a).

1We specify the vague prior (aλ, bλ) = (0.001, 1/0.001) = (0.001, 1000) as done for ρ.
2For more information on slice-sampling, see Neal (2003).
3The closed-form of the full conditional distribution of π(λ|W, V) used for the MCMC update scheme is

formally characterized in Bolte et al. (2021a).
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Using the BayesSPsurv R package

Each of the three Bayesian SP survival models in BayesSPsurv incorporates a cure rate fraction and
assumes that the time-to-event baseline hazard follows a Weibull or log-logistic distribution (which
the user specifies). Users can also incorporate time-varying covariates in either stage. BayesSPsurv
contains compiled C++ code using the package Rcpp (Eddelbuettel et al., 2020) to maximize com-
putational efficiency when estimating the included Bayesian SP survival models. In addition to the
pre-estimation spatial autocorrelation (Join Count and Global Moran’s I) tests described below, the
BayesSPsurv package also permits users to calculate the deviance information criterion (DIC) and
log-likelihood statistics from the Spatial, Exchangeable, and Pooled SP survival models’ MCMC output.
The DIC is a measure of model fit that also penalizes the effective number of parameters. Like the
Akaike Information Criterion, models with smaller values are preferable to those with larger values.
Users can also conduct MCMC diagnostics with various extant packages designed to handle mcmc
objects such as coda (Plummer et al., 2020).

Function Description

spatialSPsurv() Fits Bayesian Spatial SP survival model
exchangeSPsurv() Fits Bayesian Exchangeable SP survival model
pooledSPsurv() Fits Bayesian Pooled SP survival model
plot_JoinCount() Implement and plot Join Count statistics
plot_Moran.I() Implement and plot global Moran’s I statistics
spatial_SA() Generate spatial weights (adjacency) matrix
SPstats() Calculate DIC and log-likelihood from fitted models

Table 1: Functions in the BayesSPsurv package.

Loading the package, dataset, and assessing spatial autocorrelation

To demonstrate the utility and various functions in BayesSPsurv, we use replication data from Walter’s
(2015) global study on post-civil war peace duration (denoted in the package as Walter_2015_JCR).
Walter’s (2015) panel data consist of 1,237 observations from 46 countries observed between 1962 and
2009. As discussed in Bolte et al. (2021a), her data are well-suited for SP survival analysis because
they include two underlying populations: an “at-risk” fraction of countries in which civil wars can
potentially recur, and an “immune” fraction of countries in which civil conflict recurrence is structurally
improbable. The Walter_2015_JCR data are a subset of Walter’s (2015) most important variables,
including lgdpl for log per capita income, unpko for the presence of UN peacekeeping operations, the
binary variable victory, coded as 1 when one side in the civil war wins the conflict militarily, and
the dummy variable comprehensive, coded as 1 when the combatants sign a comprehensive peace
agreement. The dataset also includes the binary indicator renewed_war, coded as 1 for the year in
which a civil war recurs and 0 otherwise. This variable will serve as our failure event.

First, however, we load the BayesSPsurv package along with the dataset and then use the
add_duration() function from the spduration package to add several variables that allow us to
capture the survival characteristics of the data (Beger et al., 2017). unitID indicates the unique unit
identifier (in this case, a unique id for each civil conflict), and timeID specifies the temporal variable.

library(BayesSPsurv)
data(Walter_2015_JCR)
walter <- spduration::add_duration(Walter_2015_JCR,"renewed_war",

unitID = "id", tID = "year",
freq = "year", ongoing = FALSE)

str(walter)
'data.frame': 1237 obs. of 21 variables:
$ year : num 2002 2003 2004 2005 2003 ...
$ lastyear : num 0 0 0 1 0 0 0 0 0 0 ...
$ renewed_war : num 0 0 0 1 0 0 0 0 0 0 ...
$ fhcompor1 : num -1.17 -1.17 -1.08 -1 -1.08 ...
$ lgdpl : num 5.75 6.29 6.36 6.4 8 ...
...
$ failure : num 0 0 0 1 0 0 0 0 0 0 ...
$ ongoing : num 0 0 0 0 0 0 0 0 0 0 ...
$ end.spell : num 0 0 0 1 0 0 0 0 0 0 ...
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$ cured : num 0 0 0 0 1 1 1 1 1 1 ...
$ atrisk : num 1 1 1 1 0 0 0 0 0 0 ...
$ censor : num 0 0 0 0 0 0 0 0 0 0 ...
$ duration : num 1 2 3 4 1 2 3 4 5 6 ...
$ t.0 : num 0 1 2 3 0 1 2 3 4 5 ...

These new variables include duration, a cumulative count of the years of post-war peace survived, and
the dummy variable atrisk, coded as 1 for all observations that eventually experience war recurrence
in the sample period. Altogether the data include 77 post-civil war peace spells and 24 instances of
civil war recurrence.

If the preferred frailty unit is at the country-level, users can take advantage of the spatial_SA()
function in the BayesSPsurv package to generate their binary spatial weights matrix. In most cases,
analysts define spatial clustering in terms of geographic proximity. This often requires the researcher
to define some maximum distance threshold below which two units are considered “neighbors.”
spatial_SA() allows users to specify their own distance threshold. For this example, we use the
spatial_SA() function to generate an adjacency matrix of countries in the data whereby “proximity”
(aii′ = 1) is defined as having capitals that are within 800 km of each other (and aii′ = 0 otherwise).
We simply specify the unique identifier for each country (ccode) and our distance threshold of 800 km.
The spatial_SA() function will produce a 1 × N vector with identifying information (e.g., country ID)
for each observation that matches the rows and columns of the matrix. The result is a list object called
walter that includes both the original data frame and the associated adjacency matrix.

walter <- BayesSPsurv::spatial_SA(data = walter, var_ccode = "ccode", threshold = 800L)
walter[[2]][1:6,1:6]

42 90 92 93 135 155
42 0 0 0 0 0 0
90 0 0 1 1 0 0
92 0 1 0 1 0 0
93 0 1 1 0 0 0
135 0 0 0 0 0 0
155 0 0 0 0 0 0

Note that spatial adjacency between units does not need to be defined geographically; users can
conceptualize “space” as any form of the dyadic relationship between units, but typically spatial
clustering is substantively captured with some measure of geographic distance. Users can also create
their own adjacency matrix from scratch to incorporate into the Bayesian estimation routine if their
units of analysis are something other than countries.

Having generated a matrix that records the spatial relationship of all pairs of units, we may now be
interested in assessing the presence and degree of spatial autocorrelation in the data with respect to our
outcomes of interest. The BayesSPsurv package provides two functions to conduct these preliminary
tests on country-level data. The first is the plot_JoinCount() function, which generates an adjacency
matrix with a user-defined distance threshold (as above), implements the join count test for each
cross-section in the data, and then automatically plots the test statistics with user-specified confidence
intervals across each observed year. The join count test is a widely used correlational statistic for
evaluating whether the expected count of categorically distinct adjacent units is greater than what we
would expect by chance alone (Cliff and Ord, 1981). More formally, if we assume two categories, Black
and White, then the join count test statistic is

Z (BW) =
BW − E (BW)√

σ2
BW

, (11)

where BW and E(BW) are the observed and expected counts of adjacent Black and White units,
respectively, and σ2

BW = E
(

BW2)− E (BW)2. We use this test as a preliminary exercise to determine
whether countries that never experience conflict recurrence in the sample exhibit spatial autocorrelation.
Note that plot_JoinCount also has an argument specifying the minimum number of units that must
be in a cross-section for the test statistic to be calculated. In our case, there were fewer than 12 countries
in every year prior to 1975 in the data, and none were geographically proximate. By specifying n=12,
we are simply dropping years prior to 1975. The following code produces the plot in Figure 1a.

plot_JoinCount(data = walter[[1]], var_cured = "cured", var_id = "ccode",
var_time = "year", n = 12)

Negative values indicate clustering (positive spatial autocorrelation), and positive values indicate spa-
tial dispersion. Figure 1a clearly depicts spatially correlated patterns of potential “peace consolidation,”
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Figure 1: Pre-estimation Spatial Autocorrelation Tests

though the direction of the autocorrelation varies over time.

The second function, plot_Moran.I(), implements the Global Moran’s I test, which assesses the
direction and degree of spatial autocorrelation in continuous or ordinal data (Moran, 1950; Paradis et al.,
2020). We use this test to examine whether the duration of post-civil war peace among geographically
proximate countries exhibits spatial autocorrelation (or dispersion). Like the previous function,
plot_Moran.I() plots the Moran’s I values based on user-defined adjacencies and, in this case, 90%
confidence intervals for each year.

plot_Moran.I(data = walter[[1]], var_duration = "duration", var_id = "ccode",
var_time = "year", n = 12)

Figure 1b reveals that the spatial relationship of post-war peace survival oscillates between positive
autocorrelation (in the 1970s, early 1990s, and late 2000s) and spatial dispersion (in much of the 1980s
and late 1990s). Taken together, the Join Count and Moran’s I tests suggest that unobserved heteroge-
neous risk factors that transcend the borders of a single state may lead to spatial autocorrelation in
both the consolidation and duration of post-war peace in Walter’s (2015) data. This suggests that a
Spatial SP survival model is an appropriate method of analysis, particularly if proximate countries
share common unobservable risk factors that affect their odds of being immune to war recurrence or
the time it takes for renewed war to occur.

Applying the Bayesian Spatial SP survival model

The spatialSPsurv() function fits the Bayesian Spatial SP survival model, which includes spatially
autocorrelated frailties in the model’s split and survival stage and can incorporate time-varying
covariates. We illustrate the features of the spatialSPsurv() function by fitting the Bayesian Spatial
Weibull cure model on Walter’s (2015) data on post-war peace.4 The log-logistic results are reported in
Bolte et al. (2021a). We include the lgdpl variable in the estimated model’s split-stage equation, which
estimates the probability of units being in the “consolidated” post-war peace group (the “immune”
fraction), though it is important to note that atrisk is used here as the dependent variable. We estimate
the probability of post-war survival among the at-risk fraction as a function of UN peacekeeping
(unpko), outright military victory in the previous war (victory), the resolution of the previous war via
peace agreement (comprehensive), and, again, GDP/capita (lgdpl). The spatial relationship of each
country is incorporated into the model via the spatial weights matrix generated from the spatial_SA()
function described earlier.

The Spatial SP survival model is fit via Bayesian methods for inference. The MVN prior is used for
the model’s split-stage (γ) and survival-stage (β) parameters (with the following hyperparameters
sβ = Ip1, vβ = p1, sγ = Ip2, vγ = p2). The Gamma prior is used for the hazard’s shape parameter
ρ (with hyperparameters aρ = 1, bρ = 1), and separate CAR priors—with the Gamma hyperprior
assigned to λ for CAR (λ)5 —incorporate the spatially autocorrelated frailties in the model’s split-stage

4The results for all models were calculated in R version 4.0.3. on a PC with a 6-core i7 processor.
5With vague prior (aλ, bλ) = (0.001, 1/0.001) = (0.001, 1000) as done for ρ
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(V) and survival stage (W). Estimation proceeds via the MCMC algorithm described in the previous
section. To this end, we specify the MCMC sampler as follows: the argument N = 15,000 sets the
number of MCMC iterations to 15,000, burn = 5,000 discards the first 5,000 states of the Markov chain,
thin = 15 specifies the number of steps that are employed to prevent autocorrelation, and m = 10
limits the steps in the slice sampling to 10. The argument w = c(1,1,1) specifies the default values of
the size of the slice sampling for γ, β, and ρ.

For simplicity, we retain the default 0 as the initial value for all parameters with the ini.beta,
ini.gamma, ini.W, and ini.V arguments. We incorporate separate proposal variances, namely prop.varV
= 1e-05 and prop.varW = 1e-05, for the split and survival stage frailties (V, W) and then assign
separate Metropolis-Hastings proposal steps for estimating these parameters to optimize the accep-
tance rates. To specify the covariates in the model, duration ~ precedes the survival-stage covariates,
while immune ~ precedes the split-stage variables. Y0 indicates the time elapsed since inception until
time t - 1, while LY is a dummy that captures the last observation year due to censoring or failure.
A = walter[[2]] calls the spatial weights matrix from our list object. S= 'sp_id' (generated by
spatial_SA()) gives the unit identifier in the spatial weights matrix that matches the units in the data
frame. The argument form is used to specify the parametric survival distribution (which can be either
“Weibull” or “loglog”).

Importantly, the model functions in the BayesSPsurv package generate single chains for each
parameter, but we provide a routine for estimating multiple chains in parallel on the GitHub repository
for the package (https://github.com/Nicolas-Schmidt/BayesSPsurv). We first discuss the results
and diagnostics for the single-chain results using the above MCMC specification and then illustrate
the multiple-chain results and diagnostics for the Spatial SP survival model.

set.seed(123456)
model <- spatialSPsurv(duration = duration ~ victory + comprehensive + lgdpl + unpko ,

immune = atrisk ~ lgdpl,
Y0 = 't.0',
LY = 'lastyear',
S = 'sp_id' ,
data = walter[[1]],
N = 15000,
burn = 5000,
thin = 15,
w = c(1,1,1),
m = 10,
ini.beta = 0,
ini.gamma = 0,
ini.W = 0,
ini.V= 0,
form = "Weibull",
prop.varV = 1e-05,
prop.varW = 1e-05,
A = walter[[2]])

The function automatically provides a progress bar for users to track the percent of the computation
that has been completed. The elapsed run time for the Spatial SP Weibull specification being examined
here was just under 23 minutes (calculated with system.time()). Once completed, the generic print()
function displays the results6:

print(model)

Call:
spatialSPsurv(duration = duration ~ victory + comprehensive +

lgdpl + unpko, immune = atrisk ~ lgdpl, Y0 = "t.0",
LY = "lastyear", S = "sp_id", A = walter[[2]],
data = walter[[1]], N = 15000, burn = 5000, thin = 15, w = c(1,

1, 1), m = 10, ini.beta = 0, ini.gamma = 0, ini.W = 0,
ini.V = 0, form = "Weibull", prop.varV = 1e-05, prop.varW = 1e-05)

Iterations = 1:666
Thinning interval = 1
Number of chains = 1

695% Bayesian Credible Intervals are reported in Bolte et al. (2021a).
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Sample size per chain = 666

Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Duration equation:
Mean SD Naive SE Time-series SE

(Intercept) 0.3434823 1.0681878 0.041391437 0.078812901
victory 0.1028612 0.5321456 0.020620224 0.020620224
comprehensive 0.2036460 0.6178274 0.023940326 0.023940326
lgdpl 0.4831914 0.1424928 0.005521485 0.009230762
unpko 0.3057078 0.7695278 0.029818596 0.029818596

Immune equation:
Mean SD Naive SE Time-series SE

(Intercept) -0.4306327 4.545655 0.1761405 0.3648687
lgdpl -2.4722920 3.113144 0.1206319 0.1646276

The posterior mean estimates suggest that peace agreements, military victory, and peacekeeping
units may increase the survival of post-civil war peace, though none of these parameters are highly
reliable given their 95% BCIs, as reported in (Bolte et al., 2021a). However, lgdpl appears to reliably
increase the survival of peace among at-risk cases while also reliably decreasing the probability of
peace “consolidation” in the split-stage. Calling the SPstats() function calculates the Deviance
Information Criterion (DIC) and log-likelihood (LL) statistics from the estimated model, where
DIC = −2 × (L − P), L is the log-likelihood of the data given the posterior means of the covariate
parameters, and P is the effective number of parameters in the model.

SPstats(model)

$DIC
[1] -1726.128

$Loglik
[1] 5301.714

The spatialSPsurv() function produces an object of class "mcmc", which is compatible with
all standard summary and diagnostic methods for the single Markov chains in the coda package
(Plummer et al., 2020). For instance, we can test for convergence with both the Geweke (1992) test
using the geweke.diag() function and the Heidelberger and Welch (1983) stationarity test via the
heidel.diag() function in coda. We report the Heidelberger and Welch (1983) stationarity test results
in Bolte et al. (2021a) to save space. In this case, the Geweke tests indicate little evidence against
convergence for each split-stage and survival-stage covariate, because the test statistics are reasonably
close to zero.

geweke.diag(model$gammas)

Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5

(Intercept) lgdpl
-1.3755 0.4429

geweke.diag(model$betas)

Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5

(Intercept) victory comprehensive lgdpl unpko
-0.8248 -0.4271 1.8237 0.3601 -0.9471

geweke.diag(model$rho)

Fraction in 1st window = 0.1
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Fraction in 2nd window = 0.5

var1
0.3544

coda’s plot() function can then be used to display trace and posterior density plots for the single
Markov chains of the model’s split-stage γ, survival-stage β, and ρ parameters (which we do not
report here to save space). Users may also wish to validate MCMC convergence using multiple chains
with different initial values for each parameter rather than only examining single-chain diagnostics. A
routine for generating multiple chains in parallel using the doParallel (Wallig et al., 2020) and doRNG
(Gaujoux, 2020) packages is available on the BayesSPsurv GitHub repository, though single chains
with different starting values can also be run sequentially. The user can then collect them into a single
mcmc.list object and easily plot the trace and density plots of the multiple chains. Using the code on
GitHub, the Spatial SP survival model was re-run four times (to generate four chains) with 0, 1, 10,
and 50 as the initial starting values for each of the estimated parameters (β, γ, W, and V). The trace
and density plots for the multiple chains are reported below (we excluded the β intercept for aesthetic
reasons), and the total run time was approximately 28 minutes for all four chains to be generated
simultaneously.

par(mfrow=c(2,2))
plot(gammas, density = FALSE, auto.layout = FALSE, col =c (28,26,27,29))
plot(gammas, trace = FALSE, auto.layout = FALSE)

par(mfrow=c(2,4))
plot(betas[,2:5], density= FALSE, auto.layout = FALSE, col = c(28,26,27,29))
plot(betas[,2:5], trace= FALSE, auto.layout = FALSE)

Figure 2: Posterior Densities of Bayesian Spatial Split-stage Parameters (γ)

The trace plots for the Spatial SP Weibull model’s β and γ reveal decent mixing between the first
three chains, though the fourth chain appears to take longer to converge. This is unsurprising given its
extreme initial value. We can assess the convergence of the multiple chains using the Gelman-Rubin
diagnostic, which compares the within-chain variance to the between-chain variance (Gelman and
Rubin, 1992). If the difference in these variances is large, then the multiple chains likely have not
converged to a proper stationary distribution. We can easily calculate the potential scale reduction
factor (PSRF) with the gelman.diag() function in coda, which should be approximately 1 if all chains
have converged to a common distribution.
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Figure 3: Posterior Densities of Bayesian Spatial Survival-stage Parameters (β)

Potential scale reduction factors:

Point est. Upper C.I.
(Intercept) 1.19 1.38
victory 1.17 1.20
comprehensive 1.17 1.19
lgdpl 1.32 2.40
unpko 1.11 1.14

Multivariate psrf

1.05

Potential scale reduction factors:

Point est. Upper C.I.
(Intercept) 1.05 1.07
lgdpl 1.14 1.33

Multivariate psrf

1.05

The multivariate PSRF is less than 1.1 in both stages, but the point estimates for all parameters are still
insufficiently far from 1, suggesting that extending the chains would likely improve the accuracy of
the estimates.

One way to substantively interpret the spatial frailties is to display a map and determine whether
adjacent units share similar frailty values (e.g., Darmofal, 2009). The following code from the coun-
trycode (Arel-Bundock, 2020) and rworldmap (South, 2016) packages permits users to create choro-
pleth maps of the spatial frailty posterior means. Figures 4a-4b display the single-chain split-stage
(V) and survival-stage (W) frailties from our Spatial SP Weibull model (the code generates Figure 4a;
Figure 4b simply uses W in place of V.

library(rworldmap)
library(countrycode)
library(classInt)

spv <- matrix(apply(model$V, 2, mean), ncol = 1, nrow = ncol(model$V))
ISO3 <- countrycode(colnames(model$V) ,'gwn','iso3c')
spv <- data.frame(ccode = colnames(model$V), ISO3 = ISO3, spv = spv)
map <- joinCountryData2Map(spv, joinCode = "ISO3", nameJoinColumn = "ISO3")
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classInt <- classIntervals(map[["spv"]], n = 6, style = "quantile")
mapParams <- mapCountryData(map,

nameColumnToPlot = "spv",
addLegend = FALSE,
catMethod = classInt[["brks"]],
colourPalette = palette(RColorBrewer::brewer.pal(6,"RdBu")),
mapTitle = "")

do.call(addMapLegend, c(mapParams, legendLabels = "all", legendWidth = 0.5,
legendIntervals = "data", legendMar = 2))

(a) Split-stage (V) (b) Survival-stage (W)

Figure 4: Spatial Frailty Posterior Means

Note that in certain regions, there are distinct spatial bands in the (i) split-stage frailties, which range
from -0.633 to 0.381 with a corresponding standard deviation of 0.34 and (ii) survival-stage frailties
that range from -0.391 to 0.766 with a corresponding standard deviation of 0.32. These spatial bands
reveal geographic clustering in both consolidation and duration of post-war peace since similar frailty
values often occur near one another.

Applying the Bayesian Exchangeable and Pooled SP survival models

The BayesSPsurv package can also be used to estimate Bayesian Exchangeable and Pooled SP survival
models. The Exchangeable model incorporates frailties that are assumed to be statistically independent
in both stages, while the Pooled model excludes frailties altogether. We again use Walter’s (2015)
data on post-civil war peace to illustrate these models. Beginning with the Exchangeable Weibull SP
survival model, we again assign the MVN prior to the model’s γ and β parameters, the Gamma prior to
ρ, and the same default settings for the hyperparameters (sβ = Ip1, vβ = p1, sγ = Ip2, vγ = p2, aρ = 1,
bρ = 1). We also incorporate separate proposal variance variables for the nonspatial i.i.d frailties
(Vi,Wi) and assign separate Metropolis-Hastings steps to estimate these parameters. Further, we use
almost the same MCMC sampler specification as before. However, rather than incorporating spatial
information via an adjacency matrix, we let id_WV=country to define the country-level nonspatial
frailties.

set.seed(123456)
country <- countrycode(unique(walter[[1]]$ccode),'gwn','iso3c')
model1 <- exchangeSPsurv(duration = duration ~ victory + comprehensive + lgdpl + unpko,

immune = atrisk ~ lgdpl,
Y0 = 't.0',
LY = 'lastyear',
S = 'sp_id' ,
data = walter[[1]],
N = 15000,
burn = 5000,
thin = 15,
w = c(1,1,1),
m = 10,
ini.beta = 0,
ini.gamma = 0,
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ini.W = 0,
ini.V= 0,
form = "Weibull",
prop.varV = 1e-05,
prop.varW = 1e-05,
id_WV=country)

Again, users can assess either single or multiple (parallel) Markov chains with different starting
parameter values when fitting the Exchangeable SP survival model. We report the single-chain results
here for simplicity. The run time for the above specification was approximately 16 minutes and 30
seconds. The single-chain results and model fit statistics are obtained with the print() and SPstats()
functions.

print(model1)

Call:
exchangeSPsurv(duration = duration ~ victory + comprehensive +

lgdpl + unpko, immune = atrisk ~ lgdpl, Y0 = "t.0",
LY = "lastyear", S = "sp_id", data = walter[[1]],
N = 15000, burn = 5000, thin = 15, w = c(1, 1, 1), m = 10,
ini.beta = 0, ini.gamma = 0, ini.W = 0, ini.V = 0, form = "Weibull",
prop.varV = 1e-05, prop.varW = 1e-05, id_WV = country)

Iterations = 1:666
Thinning interval = 1
Number of chains = 1
Sample size per chain = 666

Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Duration equation:
Mean SD Naive SE Time-series SE

(Intercept) 0.31054460 1.0938158 0.042384501 0.08335381
victory 0.14520456 0.5328378 0.020647044 0.02064704
comprehensive 0.09721372 0.6374526 0.024700786 0.02470079
lgdpl 0.48473536 0.1455731 0.005640844 0.01061988
unpko 0.44731384 0.7421925 0.028759376 0.02875938

Immune equation:
Mean SD Naive SE Time-series SE

(Intercept) -0.8993176 5.924550 0.2295716 0.4969172
lgdpl -3.7286951 5.846367 0.2265421 0.5271203

SPstats(model1)
$DIC
[1] 3549.075

$Loglik
[1] 7506.608

Based on these results, lgdpl is still a highly reliable predictor of longer peace duration among
conflicts at risk of recurrence, while the other survival stage covariates remain positive but statistically
unreliable. In contrast to the spatial frailty model, however, the effect of lgdpl on the probability of
peace consolidation is now statistically unreliable. Users interested in displaying and interpreting the
exchangeable frailties can do so in a variety of ways, but if these results are being compared to those
of a spatial frailty model, we recommend mapping the exchangeable frailty values and comparing
the clustering (or lack thereof) of the i.i.d. frailty terms to those produced from the spatial model
(Darmofal, 2009).

Finally, the pooledSPsurv() function fits the Pooled Bayesian SP survival model. For this applica-
tion, we again assign the MVN prior to the model’s γ and β parameters, the Gamma prior to ρ, and
the same default settings for the hyperparameters described earlier.
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set.seed(123456)
model2 <- pooledSPsurv(duration = duration ~ victory + comprehensive + lgdpl + unpko,

immune = atrisk ~ lgdpl,
Y0 = 't.0',
LY = 'lastyear',
data = walter[[1]],
N = 15000,
burn = 5000,
thin = 15,
w = c(1,1,1),
m = 10,
ini.beta = 0,
ini.gamma = 0,
form = "Weibull")

Note that the MCMC sampler is almost identical to that of the previous two models, but we now
exclude the separate Metropolis-Hastings proposal step for the frailities in the MCMC algorithm as
well as the initial values for the frailty estimates since this is a non-frailty model. The run time for the
Pooled model was approximately 10 minutes. The single-chain output is again easily displayed.

print(model2)

Call:
pooledSPsurv(duration = duration ~ victory + comprehensive +

lgdpl + unpko, immune = atrisk ~ lgdpl, Y0 = "t.0",
LY = "lastyear", data = walter[[1]], N = 15000, burn = 5000,
thin = 15, w = c(1, 1, 1), m = 10, ini.beta = 0, ini.gamma = 0,
form = "Weibull")

Iterations = 1:666
Thinning interval = 1
Number of chains = 1
Sample size per chain = 666

Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Duration equation:
Mean SD Naive SE Time-series SE

(Intercept) 0.3014335 1.0572594 0.040967971 0.07197438
victory 0.1060453 0.5485730 0.021256770 0.02125677
comprehensive 0.1900127 0.6054421 0.023460406 0.02481878
lgdpl 0.4647260 0.1552465 0.006015679 0.01166616
unpko 0.2692275 0.7740804 0.029995006 0.02999501

Immune equation:
Mean SD Naive SE Time-series SE

(Intercept) -1.213902 9.617551 0.3726725 1.3195278
lgdpl -2.896038 4.939374 0.1913968 0.5267751

SPstats(model2)

$DIC
[1] 1804.527

$Loglik
[1] 6229.248

For both the Exchangeable and Pooled SP survival models, users can again employ the code
and routines available in our GitHub repository to view the trace plots from the single or multiple
Markov chains associated with the posterior densities for the γ, β, and ρ parameters and conduct
any relevant convergence diagnostics. The plots and convergence test statistics for the models
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presented here are reported in Bolte et al. (2021a) to save space. Additional information is available at
https://github.com/Nicolas-Schmidt/BayesSPsurv.

Conclusion

Survival data often include two populations with different underlying risk propensities: the immune
fraction of right-censored units that will never experience the event of interest and the at-risk fraction
of units that have or will. Numerous R-packages such as smcure, nltm, and spduration have been
developed to fit parametric or semi-parametric cure models for nonspatial survival data, but none of
these packages allow the user to account for spatial autocorrelation in both stages. A separate set of
packages allows the user to include spatially weighted frailties in conventional survival models (Taylor
and Rowlingson, 2017; Zhou et al., 2020), but spatial autocorrelation may also influence the probability
of immunity from an event of interest. The BayesSPsurv package addresses this lacuna by offering a
suite of functions to fit Bayesian SP survival models. Specifically, users can estimate Bayesian Pooled,
Exchangeable, and Spatial frailty SP survival models with time-varying covariates, specify their own
spatial weights matrices, and easily examine diagnostic statistics. The applied potential of the Spatial
SP survival model, in particular, is considerable, as researchers studying anything from the survival of
cancer patients to the survival of political regimes may have a methodological need to model spatial
autocorrelation in the immune fraction.

Future work can build upon the spatial and nonspatial cure models presented here to develop
estimation routines for survival data with multiple stages, competing risks, or recurrent events.
Moreover, although BayesSPsurv is the first to allow spatially autocorrelated frailties in both stages,
future work can extend the frailty models in our package by employing a similar approach as Yin
(2005) to incorporate shared frailties with factor loadings to account for any correlation between the
frailty terms (W and V) in either stage. Subsequent iterations of the package will include alternative
baseline hazards based on penalized splines or nonparametric Gaussian processes as well as the option
to use a semiparametric Cox model with exchangeable or spatial frailties. Implementing these future
developments with an external MCMC sampling dependency built on C++ subroutines like STAN
would be useful, given the Hamiltonian Monte Carlo algorithm’s efficiency in sampling from high
dimensional posterior distributions. We also plan to extend BayesSPsurv to accommodate left and
interval censoring and delayed entry.
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