16 research outputs found

    MetaBase--the wiki-database of biological databases.

    Get PDF
    Biology is generating more data than ever. As a result, there is an ever increasing number of publicly available databases that analyse, integrate and summarize the available data, providing an invaluable resource for the biological community. As this trend continues, there is a pressing need to organize, catalogue and rate these resources, so that the information they contain can be most effectively exploited. MetaBase (MB) (http://MetaDatabase.Org) is a community-curated database containing more than 2000 commonly used biological databases. Each entry is structured using templates and can carry various user comments and annotations. Entries can be searched, listed, browsed or queried. The database was created using the same MediaWiki technology that powers Wikipedia, allowing users to contribute on many different levels. The initial release of MB was derived from the content of the 2007 Nucleic Acids Research (NAR) Database Issue. Since then, approximately 100 databases have been manually collected from the literature, and users have added information for over 240 databases. MB is synchronized annually with the static Molecular Biology Database Collection provided by NAR. To date, there have been 19 significant contributors to the project; each one is listed as an author here to highlight the community aspect of the project

    Ensembl Genomes 2016: more genomes, more complexity

    Get PDF
    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces

    A chromosome conformation capture ordered sequence of the barley genome

    Get PDF
    201

    The NGS WikiBook: a dynamic collaborative online training effort with long-term sustainability

    Get PDF
    Next-generation sequencing (NGS) is increasingly being adopted as the backbone of biomedical research. With the commercialization of various affordable desktop sequencers, NGS will be reached by increasing numbers of cellular and molecular biologists, necessitating community consensus on bioinformatics protocols to tackle the exponential increase in quantity of sequence data. The current resources for NGS informatics are extremely fragmented. Finding a centralized synthesis is difficult. A multitude of tools exist for NGS data analysis; however, none of these satisfies all possible uses and needs. This gap in functionality could be filled by integrating different methods in customized pipelines, an approach helped by the open-source nature of many NGS programmes. Drawing from community spirit and with the use of the Wikipedia framework, we have initiated a collaborative NGS resource: The NGS WikiBook. We have collected a sufficient amount of text to incentivize a broader community to contribute to it. Users can search, browse, edit and create new content, so as to facilitate self-learning and feedback to the community. The overall structure and style for this dynamic material is designed for the bench biologists and non-bioinformaticians. The flexibility of online material allows the readers to ignore details in a first read, yet have immediate access to the information they need. Each chapter comes with practical exercises so readers may familiarize themselves with each step. The NGS WikiBook aims to create a collective laboratory book and protocol that explains the key concepts and describes best practices in this fast-evolving field

    TransPLANT resources for triticeae genomic data

    No full text
    The genome sequences of many important Triticeae species, including bread wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.), remained uncharacterized for a long time because their high repeat content, large sizes, and polyploidy. As a result of improvements in sequencing technologies and novel analyses strategies, several of these have recently been deciphered. These efforts have generated new insights into Triticeae biology and genome organization and have important implications for downstream usage by breeders, experimental biologists, and comparative genomicists. transPLANT (http://www.transplantdb.eu) is an EU-funded project aimed at constructing hardware, software, and data infrastructure for genome-scale research in the life sciences. Since the Triticeae data are intrinsically complex, heterogenous, and distributed, the transPLANT consortium has undertaken efforts to develop common data formats and tools that enable the exchange and integration of data from distributed resources. Here we present an overview of the individual Triticeae genome resources hosted by transPLANT partners, introduce the objectives of transPLANT, and outline common developments and interfaces supporting integrated data access
    corecore