134 research outputs found

    Global, regional, and national prevalence and mortality burden of sickle cell disease, 2000–2021: a systematic analysis from the Global Burden of Disease Study 2021

    Get PDF
    Background Previous global analyses, with known underdiagnosis and single cause per death attribution systems, provide only a small insight into the suspected high population health effect of sickle cell disease. Completed as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021, this study delivers a comprehensive global assessment of prevalence of sickle cell disease and mortality burden by age and sex for 204 countries and territories from 2000 to 2021. Methods We estimated cause-specific sickle cell disease mortality using standardised GBD approaches, in which each death is assigned to a single underlying cause, to estimate mortality rates from the International Classification of Diseases (ICD)-coded vital registration, surveillance, and verbal autopsy data. In parallel, our goal was to estimate a more accurate account of sickle cell disease health burden using four types of epidemiological data on sickle cell disease: birth incidence, age-specific prevalence, with-condition mortality (total deaths), and excess mortality (excess deaths). Systematic reviews, supplemented with ICD-coded hospital discharge and insurance claims data, informed this modelling approach. We employed DisMod-MR 2.1 to triangulate between these measures—borrowing strength from predictive covariates and across age, time, and geography—and generated internally consistent estimates of incidence, prevalence, and mortality for three distinct genotypes of sickle cell disease: homozygous sickle cell disease and severe sickle cell β-thalassaemia, sickle-haemoglobin C disease, and mild sickle cell β-thalassaemia. Summing the three models yielded final estimates of incidence at birth, prevalence by age and sex, and total sickle cell disease mortality, the latter of which was compared directly against cause-specific mortality estimates to evaluate differences in mortality burden assessment and implications for the Sustainable Development Goals (SDGs). Findings Between 2000 and 2021, national incidence rates of sickle cell disease were relatively stable, but total births of babies with sickle cell disease increased globally by 13·7% (95% uncertainty interval 11·1–16·5), to 515 000 (425 000–614 000), primarily due to population growth in the Caribbean and western and central sub-Saharan Africa. The number of people living with sickle cell disease globally increased by 41·4% (38·3–44·9), from 5·46 million (4·62–6·45) in 2000 to 7·74 million (6·51–9·2) in 2021. We estimated 34 400 (25 000–45 200) cause-specific all-age deaths globally in 2021, but total sickle cell disease mortality burden was nearly 11-times higher at 376 000 (303 000–467 000). In children younger than 5 years, there were 81 100 (58 800–108 000) deaths, ranking total sickle cell disease mortality as 12th (compared to 40th for cause-specific sickle cell disease mortality) across all causes estimated by the GBD in 2021. Interpretation Our findings show a strikingly high contribution of sickle cell disease to all-cause mortality that is not apparent when each death is assigned to only a single cause. Sickle cell disease mortality burden is highest in children, especially in countries with the greatest under-5 mortality rates. Without comprehensive strategies to address morbidity and mortality associated with sickle cell disease, attainment of SDG 3.1, 3.2, and 3.4 is uncertain. Widespread data gaps and correspondingly high uncertainty in the estimates highlight the urgent need for routine and sustained surveillance efforts, further research to assess the contribution of conditions associated with sickle cell disease, and widespread deployment of evidence-based prevention and treatment for those with sickle cell disease.publishedVersio

    Use of multidimensional item response theory methods for dementia prevalence prediction: an example using the Health and Retirement Survey and the Aging, Demographics, and Memory Study

    Get PDF
    Background: Data sparsity is a major limitation to estimating national and global dementia burden. Surveys with full diagnostic evaluations of dementia prevalence are prohibitively resource-intensive in many settings. However, validation samples from nationally representative surveys allow for the development of algorithms for the prediction of dementia prevalence nationally. Methods: Using cognitive testing data and data on functional limitations from Wave A (2001–2003) of the ADAMS study (n = 744) and the 2000 wave of the HRS study (n = 6358) we estimated a two-dimensional item response theory model to calculate cognition and function scores for all individuals over 70. Based on diagnostic information from the formal clinical adjudication in ADAMS, we fit a logistic regression model for the classification of dementia status using cognition and function scores and applied this algorithm to the full HRS sample to calculate dementia prevalence by age and sex. Results: Our algorithm had a cross-validated predictive accuracy of 88% (86–90), and an area under the curve of 0.97 (0.97–0.98) in ADAMS. Prevalence was higher in females than males and increased over age, with a prevalence of 4% (3–4) in individuals 70–79, 11% (9–12) in individuals 80–89 years old, and 28% (22–35) in those 90 and older. Conclusions: Our model had similar or better accuracy as compared to previously reviewed algorithms for the prediction of dementia prevalence in HRS, while utilizing more flexible methods. These methods could be more easily generalized and utilized to estimate dementia prevalence in other national surveys

    Global mortality from dementia: Application of a newmethod and results from the global burden of disease study 2019

    Get PDF
    INTRODUCTION: Dementia is currently one of the leading causes of mortality globally, and mortality due to dementia will likely increase in the future along with corresponding increases in population growth and population aging. However, large inconsistencies in coding practices in vital registration systems over time and between countries complicate the estimation of global dementia mortality. METHODS: We meta-analyzed the excess risk of death in those with dementia and multiplied these estimates by the proportion of dementia deaths occurring in those with severe, end-stage disease to calculate the total number of deaths that could be attributed to dementia. RESULTS: We estimated that there were 1.62 million (95% uncertainty interval [UI]: 0.41–4.21) deaths globally due to dementia in 2019. More dementia deaths occurred in women (1.06 million [0.27–2.71]) than men (0.56 million [0.14–1.51]), largely but not entirely due to the higher life expectancy in women (age-standardized female-to-male ratio 1.19 [1.10–1.26]). Due to population aging, there was a large increase in all-age mortality rates from dementia between 1990 and 2019 (100.1% [89.1–117.5]). In 2019, deaths due to dementia ranked seventh globally in all ages and fourth among individuals 70 and older compared to deaths from other diseases estimated in the Global Burden of Disease (GBD) study. DISCUSSION: Mortality due to dementia represents a substantial global burden, and is expected to continue to grow into the future as an older, aging population expands globally

    Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access Article under the CC BY 4.0 license. Background: Health system planning requires careful assessment of chronic kidney disease (CKD) epidemiology, but data for morbidity and mortality of this disease are scarce or non-existent in many countries. We estimated the global, regional, and national burden of CKD, as well as the burden of cardiovascular disease and gout attributable to impaired kidney function, for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017. We use the term CKD to refer to the morbidity and mortality that can be directly attributed to all stages of CKD, and we use the term impaired kidney function to refer to the additional risk of CKD from cardiovascular disease and gout. Methods: The main data sources we used were published literature, vital registration systems, end-stage kidney disease registries, and household surveys. Estimates of CKD burden were produced using a Cause of Death Ensemble model and a Bayesian meta-regression analytical tool, and included incidence, prevalence, years lived with disability, mortality, years of life lost, and disability-adjusted life-years (DALYs). A comparative risk assessment approach was used to estimate the proportion of cardiovascular diseases and gout burden attributable to impaired kidney function. Findings: Globally, in 2017, 1·2 million (95% uncertainty interval [UI] 1·2 to 1·3) people died from CKD. The global all-age mortality rate from CKD increased 41·5% (95% UI 35·2 to 46·5) between 1990 and 2017, although there was no significant change in the age-standardised mortality rate (2·8%, −1·5 to 6·3). In 2017, 697·5 million (95% UI 649·2 to 752·0) cases of all-stage CKD were recorded, for a global prevalence of 9·1% (8·5 to 9·8). The global all-age prevalence of CKD increased 29·3% (95% UI 26·4 to 32·6) since 1990, whereas the age-standardised prevalence remained stable (1·2%, −1·1 to 3·5). CKD resulted in 35·8 million (95% UI 33·7 to 38·0) DALYs in 2017, with diabetic nephropathy accounting for almost a third of DALYs. Most of the burden of CKD was concentrated in the three lowest quintiles of Socio-demographic Index (SDI). In several regions, particularly Oceania, sub-Saharan Africa, and Latin America, the burden of CKD was much higher than expected for the level of development, whereas the disease burden in western, eastern, and central sub-Saharan Africa, east Asia, south Asia, central and eastern Europe, Australasia, and western Europe was lower than expected. 1·4 million (95% UI 1·2 to 1·6) cardiovascular disease-related deaths and 25·3 million (22·2 to 28·9) cardiovascular disease DALYs were attributable to impaired kidney function. Interpretation: Kidney disease has a major effect on global health, both as a direct cause of global morbidity and mortality and as an important risk factor for cardiovascular disease. CKD is largely preventable and treatable and deserves greater attention in global health policy decision making, particularly in locations with low and middle SDI. Funding: Bill & Melinda Gates Foundation

    Use of multidimensional item response theory methods for dementia prevalence prediction: an example using the Health and Retirement Survey and the Aging, Demographics, and Memory Study.

    Get PDF
    BACKGROUND: Data sparsity is a major limitation to estimating national and global dementia burden. Surveys with full diagnostic evaluations of dementia prevalence are prohibitively resource-intensive in many settings. However, validation samples from nationally representative surveys allow for the development of algorithms for the prediction of dementia prevalence nationally. METHODS: Using cognitive testing data and data on functional limitations from Wave A (2001-2003) of the ADAMS study (n = 744) and the 2000 wave of the HRS study (n = 6358) we estimated a two-dimensional item response theory model to calculate cognition and function scores for all individuals over 70. Based on diagnostic information from the formal clinical adjudication in ADAMS, we fit a logistic regression model for the classification of dementia status using cognition and function scores and applied this algorithm to the full HRS sample to calculate dementia prevalence by age and sex. RESULTS: Our algorithm had a cross-validated predictive accuracy of 88% (86-90), and an area under the curve of 0.97 (0.97-0.98) in ADAMS. Prevalence was higher in females than males and increased over age, with a prevalence of 4% (3-4) in individuals 70-79, 11% (9-12) in individuals 80-89 years old, and 28% (22-35) in those 90 and older. CONCLUSIONS: Our model had similar or better accuracy as compared to previously reviewed algorithms for the prediction of dementia prevalence in HRS, while utilizing more flexible methods. These methods could be more easily generalized and utilized to estimate dementia prevalence in other national surveys

    Global, regional, and national sex-specific burden and control of the HIV epidemic, 1990–2019, for 204 countries and territories: the Global Burden of Diseases Study 2019

    Get PDF
    Background: The sustainable development goals (SDGs) aim to end HIV/AIDS as a public health threat by 2030. Understanding the current state of the HIV epidemic and its change over time is essential to this effort. This study assesses the current sex-specific HIV burden in 204 countries and territories and measures progress in the control of the epidemic. Methods: To estimate age-specific and sex-specific trends in 48 of 204 countries, we extended the Estimation and Projection Package Age-Sex Model to also implement the spectrum paediatric model. We used this model in cases where age and sex specific HIV-seroprevalence surveys and antenatal care-clinic sentinel surveillance data were available. For the remaining 156 of 204 locations, we developed a cohort-incidence bias adjustment to derive incidence as a function of cause-of-death data from vital registration systems. The incidence was input to a custom Spectrum model. To assess progress, we measured the percentage change in incident cases and deaths between 2010 and 2019 (threshold >75% decline), the ratio of incident cases to number of people living with HIV (incidence-to-prevalence ratio threshold <0·03), and the ratio of incident cases to deaths (incidence-to-mortality ratio threshold <1·0). Findings: In 2019, there were 36·8 million (95% uncertainty interval [UI] 35·1–38·9) people living with HIV worldwide. There were 0·84 males (95% UI 0·78–0·91) per female living with HIV in 2019, 0·99 male infections (0·91–1·10) for every female infection, and 1·02 male deaths (0·95–1·10) per female death. Global progress in incident cases and deaths between 2010 and 2019 was driven by sub-Saharan Africa (with a 28·52% decrease in incident cases, 95% UI 19·58–35·43, and a 39·66% decrease in deaths, 36·49–42·36). Elsewhere, the incidence remained stable or increased, whereas deaths generally decreased. In 2019, the global incidence-to-prevalence ratio was 0·05 (95% UI 0·05–0·06) and the global incidence-to-mortality ratio was 1·94 (1·76–2·12). No regions met suggested thresholds for progress. Interpretation: Sub-Saharan Africa had both the highest HIV burden and the greatest progress between 1990 and 2019. The number of incident cases and deaths in males and females approached parity in 2019, although there remained more females with HIV than males with HIV. Globally, the HIV epidemic is far from the UNAIDS benchmarks on progress metrics. Funding: The Bill & Melinda Gates Foundation, the National Institute of Mental Health of the US National Institutes of Health (NIH), and the National Institute on Aging of the NIH

    Global mortality from dementia : Application of a new method and results from the Global Burden of Disease Study 2019

    Get PDF
    Introduction Dementia is currently one of the leading causes of mortality globally, and mortality due to dementia will likely increase in the future along with corresponding increases in population growth and population aging. However, large inconsistencies in coding practices in vital registration systems over time and between countries complicate the estimation of global dementia mortality. Methods We meta-analyzed the excess risk of death in those with dementia and multiplied these estimates by the proportion of dementia deaths occurring in those with severe, end-stage disease to calculate the total number of deaths that could be attributed to dementia. Results We estimated that there were 1.62 million (95% uncertainty interval [UI]: 0.41-4.21) deaths globally due to dementia in 2019. More dementia deaths occurred in women (1.06 million [0.27-2.71]) than men (0.56 million [0.14-1.51]), largely but not entirely due to the higher life expectancy in women (age-standardized female-to-male ratio 1.19 [1.10-1.26]). Due to population aging, there was a large increase in all-age mortality rates from dementia between 1990 and 2019 (100.1% [89.1-117.5]). In 2019, deaths due to dementia ranked seventh globally in all ages and fourth among individuals 70 and older compared to deaths from other diseases estimated in the Global Burden of Disease (GBD) study. Discussion Mortality due to dementia represents a substantial global burden, and is expected to continue to grow into the future as an older, aging population expands globally.Peer reviewe

    Global, regional, and national prevalence and mortality burden of sickle cell disease, 2000-2021: a systematic analysis from the Global Burden of Disease Study 2021

    Get PDF
    BACKGROUND: Previous global analyses, with known underdiagnosis and single cause per death attribution systems, provide only a small insight into the suspected high population health effect of sickle cell disease. Completed as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021, this study delivers a comprehensive global assessment of prevalence of sickle cell disease and mortality burden by age and sex for 204 countries and territories from 2000 to 2021. METHODS: We estimated cause-specific sickle cell disease mortality using standardised GBD approaches, in which each death is assigned to a single underlying cause, to estimate mortality rates from the International Classification of Diseases (ICD)-coded vital registration, surveillance, and verbal autopsy data. In parallel, our goal was to estimate a more accurate account of sickle cell disease health burden using four types of epidemiological data on sickle cell disease: birth incidence, age-specific prevalence, with-condition mortality (total deaths), and excess mortality (excess deaths). Systematic reviews, supplemented with ICD-coded hospital discharge and insurance claims data, informed this modelling approach. We employed DisMod-MR 2.1 to triangulate between these measures-borrowing strength from predictive covariates and across age, time, and geography-and generated internally consistent estimates of incidence, prevalence, and mortality for three distinct genotypes of sickle cell disease: homozygous sickle cell disease and severe sickle cell β-thalassaemia, sickle-haemoglobin C disease, and mild sickle cell β-thalassaemia. Summing the three models yielded final estimates of incidence at birth, prevalence by age and sex, and total sickle cell disease mortality, the latter of which was compared directly against cause-specific mortality estimates to evaluate differences in mortality burden assessment and implications for the Sustainable Development Goals (SDGs). FINDINGS: Between 2000 and 2021, national incidence rates of sickle cell disease were relatively stable, but total births of babies with sickle cell disease increased globally by 13·7% (95% uncertainty interval 11·1-16·5), to 515 000 (425 000-614 000), primarily due to population growth in the Caribbean and western and central sub-Saharan Africa. The number of people living with sickle cell disease globally increased by 41·4% (38·3-44·9), from 5·46 million (4·62-6·45) in 2000 to 7·74 million (6·51-9·2) in 2021. We estimated 34 400 (25 000-45 200) cause-specific all-age deaths globally in 2021, but total sickle cell disease mortality burden was nearly 11-times higher at 376 000 (303 000-467 000). In children younger than 5 years, there were 81 100 (58 800-108 000) deaths, ranking total sickle cell disease mortality as 12th (compared to 40th for cause-specific sickle cell disease mortality) across all causes estimated by the GBD in 2021. INTERPRETATION: Our findings show a strikingly high contribution of sickle cell disease to all-cause mortality that is not apparent when each death is assigned to only a single cause. Sickle cell disease mortality burden is highest in children, especially in countries with the greatest under-5 mortality rates. Without comprehensive strategies to address morbidity and mortality associated with sickle cell disease, attainment of SDG 3.1, 3.2, and 3.4 is uncertain. Widespread data gaps and correspondingly high uncertainty in the estimates highlight the urgent need for routine and sustained surveillance efforts, further research to assess the contribution of conditions associated with sickle cell disease, and widespread deployment of evidence-based prevention and treatment for those with sickle cell disease. FUNDING: Bill & Melinda Gates Foundation

    Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. Methods: Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (>= 65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0-100 based on the 2.5th and 97.5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target-1 billion more people benefiting from UHC by 2023-we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. Findings: Globally, performance on the UHC effective coverage index improved from 45.8 (95% uncertainty interval 44.2-47.5) in 1990 to 60.3 (58.7-61.9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2.6% [1.9-3.3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010-2019 relative to 1990-2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0.79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach 1398pooledhealthspendingpercapita(US1398 pooled health spending per capita (US adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388.9 million (358.6-421.3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3.1 billion (3.0-3.2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968.1 million [903.5-1040.3]) residing in south Asia. Interpretation: The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people-the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close-or how far-all populations are in benefiting from UHC

    Mapping age- and sex-specific HIV prevalence in adults in sub-Saharan Africa, 2000–2018

    Get PDF
    Background: Human immunodeficiency virus and acquired immune deficiency syndrome (HIV/AIDS) is still among the leading causes of disease burden and mortality in sub-Saharan Africa (SSA), and the world is not on track to meet targets set for ending the epidemic by the Joint United Nations Programme on HIV/AIDS (UNAIDS) and the United Nations Sustainable Development Goals (SDGs). Precise HIV burden information is critical for effective geographic and epidemiological targeting of prevention and treatment interventions. Age- and sex-specific HIV prevalence estimates are widely available at the national level, and region-wide local estimates were recently published for adults overall. We add further dimensionality to previous analyses by estimating HIV prevalence at local scales, stratified into sex-specific 5-year age groups for adults ages 15–59 years across SSA. Methods: We analyzed data from 91 seroprevalence surveys and sentinel surveillance among antenatal care clinic (ANC) attendees using model-based geostatistical methods to produce estimates of HIV prevalence across 43 countries in SSA, from years 2000 to 2018, at a 5 × 5-km resolution and presented among second administrative level (typically districts or counties) units. Results: We found substantial variation in HIV prevalence across localities, ages, and sexes that have been masked in earlier analyses. Within-country variation in prevalence in 2018 was a median 3.5 times greater across ages and sexes, compared to for all adults combined. We note large within-district prevalence differences between age groups: for men, 50% of districts displayed at least a 14-fold difference between age groups with the highest and lowest prevalence, and at least a 9-fold difference for women. Prevalence trends also varied over time; between 2000 and 2018, 70% of all districts saw a reduction in prevalence greater than five percentage points in at least one sex and age group. Meanwhile, over 30% of all districts saw at least a five percentage point prevalence increase in one or more sex and age group. Conclusions: As the HIV epidemic persists and evolves in SSA, geographic and demographic shifts in prevention and treatment efforts are necessary. These estimates offer epidemiologically informative detail to better guide more targeted interventions, vital for combating HIV in SSA. © 2022, The Author(s).Funding text 1: S Afzal acknowledges support of the Pakistan Society of Medical Infectious Diseases and King Edward Medical University to access the relevant data of HIV from various sources. T W Bärnighausen was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, funded by the German Federal Ministry of Education and Research. F Carvalho and E Fernandes acknowledge support from Fundação para a Ciência e a Tecnologia (FCT), I.P., in the scope of the project UIDP/04378/2020 and UIDB/04378/2020 of the Research Unit on Applied Molecular Biosciences - UCIBIO and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy - i4HB; FCT/MCTES (Ministério da Ciência, Tecnologia e Ensino Superior) through the project UIDB/50006/2020. K Deribe acknowledges support by the Wellcome Trust [grant number 201900/Z/16/Z] as part of his International Intermediate Fellowship. C Herteliu and A Pana are partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084. Claudiu Herteliu is partially supported by a grant of the Romanian Ministry of Research Innovation and Digitalization, MCID, project number ID-585-CTR-42-PFE-2021. Y J Kim acknowledges support by the Research Management Centre, Xiamen University Malaysia [No. XMUMRF/2020-C6/ITCM/0004]. S L Koulmane Laxminarayana acknowledges institutional support by the Manipal Academy of Higher Education. K Krishan acknowledges non-financial support from UGC Centre of Advanced Study, CAS II, Department of Anthropology, Panjab University, Chandigarh, India. M Kumar would like to acknowledge NIH/FIC K43 TW010716-04. I Landires is a member of the Sistema Nacional de Investigación (SNI), supported by the Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Panama. V Nuñez-Samudio is a member of the Sistema Nacional de Investigación (SNI), which is supported by Panama’s Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT). O O Odukoya was supported by the Fogarty International Center of the National Institutes of Health under the Award Number K43TW010704. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Z Quazi Syed acknowledges support from JNMC, Datta Meghe Institute of Medical Sciences. A I Ribeiro was supported by National Funds through FCT, under the ‘Stimulus of Scientific Employment – Individual Support’ program within the contract CEECIND/02386/2018. A M Samy acknowledges the support from a fellowship of the Egyptian Fulbright Mission program and Ain Shams University. R Shrestha acknowledges support from NIDA K01 Award: K01DA051346. N Taveira acknowledges support from FCT and Aga Khan Development Network (AKDN) - Portugal Collaborative Research Network in Portuguese speaking countries in Africa (project reference: 332821690), and by the European & Developing Countries Clinical Trials Partnership (EDCTP), UE (project reference: RIA2016MC-1615). B Unnikrishnan acknowledges support from Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal. ; Funding text 2: LBD sub-Saharan Africa HIV Prevalence Collaborators S Afzal acknowledges support of the Pakistan Society of Medical Infectious Diseases and King Edward Medical University to access the relevant data of HIV from various sources. T W Bärnighausen was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, funded by the German Federal Ministry of Education and Research. F Carvalho and E Fernandes acknowledge support from Fundação para a Ciência e a Tecnologia (FCT), I.P., in the scope of the project UIDP/04378/2020 and UIDB/04378/2020 of the Research Unit on Applied Molecular Biosciences - UCIBIO and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy - i4HB; FCT/MCTES (Ministério da Ciência, Tecnologia e Ensino Superior) through the project UIDB/50006/2020. K Deribe acknowledges support by the Wellcome Trust [grant number 201900/Z/16/Z] as part of his International Intermediate Fellowship. C Herteliu and A Pana are partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084. Claudiu Herteliu is partially supported by a grant of the Romanian Ministry of Research Innovation and Digitalization, MCID, project number ID-585-CTR-42-PFE-2021. Y J Kim acknowledges support by the Research Management Centre, Xiamen University Malaysia [No. XMUMRF/2020-C6/ITCM/0004]. S L Koulmane Laxminarayana acknowledges institutional support by the Manipal Academy of Higher Education. K Krishan acknowledges non-financial support from UGC Centre of Advanced Study, CAS II, Department of Anthropology, Panjab University, Chandigarh, India. M Kumar would like to acknowledge NIH/FIC K43 TW010716-04. I Landires is a member of the Sistema Nacional de Investigación (SNI), supported by the Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Panama. V Nuñez-Samudio is a member of the Sistema Nacional de Investigación (SNI), which is supported by Panama’s Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT). O O Odukoya was supported by the Fogarty International Center of the National Institutes of Health under the Award Number K43TW010704. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Z Quazi Syed acknowledges support from JNMC, Datta Meghe Institute of Medical Sciences. A I Ribeiro was supported by National Funds through FCT, under the ‘Stimulus of Scientific Employment – Individual Support’ program within the contract CEECIND/02386/2018. A M Samy acknowledges the support from a fellowship of the Egyptian Fulbright Mission program and Ain Shams University. R Shrestha acknowledges support from NIDA K01 Award: K01DA051346. N Taveira acknowledges support from FCT and Aga Khan Development Network (AKDN) - Portugal Collaborative Research Network in Portuguese speaking countries in Africa (project reference: 332821690), and by the European & Developing Countries Clinical Trials Partnership (EDCTP), UE (project reference: RIA2016MC-1615). B Unnikrishnan acknowledges support from Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal.; Funding text 3: This work was primarily supported by grant OPP1132415 from the Bill & Melinda Gates Foundation. The funder of the study had no role in study design, data collection, data analysis, data interpretation, writing of the report, or decision to publish. The corresponding authors had full access to all the data in the study and had final responsibility for the decision to submit for publication. ; Funding text 4: S Afzal reports leadership or fiduciary role in other board, society, committee or advocacy group, unpaid, with the Pakistan society of Community Medicine & Public Health, the Pakistan Association of Medical Editors, and the Pakistan Society of Medical Infectious Diseases, all outside the submitted work. R Ancuceanu reports 5 payment or honoraria for lectures, presentations, speakers bureaus, manuscript writing, or educational events from Avvie, Sandoz, and B Braun, all outside the submitted work. T W Bärnighausen reports research grants from the European Union (Horizon 2020 and EIT Health), German Research Foundation (DFG), US National Institutes of Health, German Ministry of Education and Research, Alexander von Humboldt Foundation, Else-Kröner-Fresenius-Foundation, Wellcome Trust, Bill & Melinda Gates Foundation, KfW, UNAIDS, and WHO; consulting fees from KfW on the OSCAR initiative in Vietnam; participation on a Data Safety Monitoring Board or Advisory Board with the NIH-funded study “Healthy Options” (PIs: Smith Fawzi, Kaaya), Chair, Data Safety and Monitoring Board (DSMB), German National Committee on the “Future of Public Health Research and Education,” Chair of the scientific advisory board to the EDCTP Evaluation, Member of the UNAIDS Evaluation Expert Advisory Committee, National Institutes of Health Study Section Member on Population and Public Health Approaches to HIV/AIDS (PPAH), US National Academies of Sciences, Engineering, and Medicine’s Committee for the “Evaluation of Human Resources for Health in the Republic of Rwanda under the President’s Emergency Plan for AIDS Relief (PEPFAR),” University of Pennsylvania (UPenn) Population Aging Research Center (PARC) External Advisory Board Member; leadership or fiduciary role in other board, society, committee or advocacy group, paid or unpaid, as co-chair of the Global Health Hub Germany (which was initiated by the German Ministry of Health); all outside the submitted work. J das Neves reports grants or contracts from Ref. 13605 – Programa GÉNESE, Gilead Portugal (PGG/002/2016 – Programa GÉNESE, Gilead Portugal) outside the submitted work. L Dwyer-Lindgren reports support for the present manuscript from the Bill & Melinda Gates Foundation through grant OPP1132415. I Filip reports other financial or non-financial interests from Avicenna Medical and Clinical Research Institute, outside the submitted work. E Haeuser reports support for the present manuscript from the Bill & Melinda Gates Foundation through grant OPP1132415. C Herteliu reports grants from Romanian Ministry of Research Innovation and Digitalization, MCID, for project number ID-585-CTR-42-PFE-2021 (Jan 2022-Jun 2023) “Enhancing institutional performance through development of infrastructure and transdisciplinary research ecosystem within socio-economic domain – PERFECTIS,” from Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, for project number PN-III-P4-ID-PCCF-2016-0084 (Oct 2018-Sep 2022) “Understanding and modelling time-space patterns of psychology-related inequalities and polarization,” and project number PN-III-P2-2.1-SOL-2020-2-0351 (Jun 2020-Oct 2020) “Approaches within public health management in the context of COVID-19 pandemic,” and from the Ministry of Labour and Social Justice, Romania for project number “Agenda for skills Romania 2020-2025”; all outside the submitted work. J J Jozwiak reports payment or honoraria for lectures, presentations, speakers bureaus, manuscript writing, or educational events from Teva, Amgen, Synexus, Boehringer Ingelheim, Zentiva, and Sanofi as personal fees, all outside the submitted work. J Khubchandani reports other financial interests from Teva Pharmaceuticals, all outside the submitted work. K Krishnan reports other non-financial support from UGC Centre of Advanced Study, CAS II, Department of Anthropology, Panjab University, Chandigarh, India, outside the submitted work. H J Larson reports grants or contracts from the MacArthur Foundation and Merck to London School of Hygeine and Tropical Medicine, and from the Vaccine Confidence Fund to the University of Washington; payment or honoraria for lectures, presentations, speakers bureaus, manuscript writing, or educational events from Center for Strategic and International Studies as payment to LSHTM for co-chairing HighLevel Panel and from GSK as personal payment for developing training sessions and lectures; leadership or fiduciary role in other board, society, committee or advocacy group, pair, with the ApiJect Advisory Board; all outside the submitted work. O O Odukoya reports support for the present manuscript from the Fogarty International Center of the National Institutes of Health under the Award Number K43TW010704. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. A Pans reports grants from Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, for project number PN-III-P4-ID-PCCF-2016-0084 (Oct 2018-Sep 2022) “Understanding and modelling time-space patterns of psychology-related inequalities and polarization,” and project number PN-III-P2-2.1-SOL-2020-2-0351 (Jun 2020-Oct 2020) “Approaches within public health management in the context of COVID-19 pandemic,” outside the submitted work. S R Pandi-Perumal reports royalties from Springer for editing services; stock or stock options in Somnogen Canada Inc as the President and Chief Executive Officer; all outside the submitted work. A Radfar reports other financial or non-financial interests from Avicenna Medical and Clinical Research Institute, outside the submitted work. A I Ribeiro reports grants or contracts from National Funds through FCT, under the ‘Stimulus of Scientific Employment – Individual Support’ program within the contract CEECIND/02386/2018, outside the submitted work. J M Ross reports support for the present manuscript from the Bill & Melinda Gates Foundation through grant OPP1132415; grants or contracts from National Institutes of Health and Firland Foundation as payments to their institution; consulting fees from United States Agency for International Development as personal payments, and from KNCV Tuberculosis Foundation as payments to their institution; all outside the submitted work. E Rubagotti reports payment or honoraria for lectures, presentations, speakers bureaus, manuscript writing, or educational events from the Greenwich China Office and Unviersity Prince Mohammad VI, Morocco, all outside the submitted work. B Sartorius reports grants or contracts from DHSC – GRAM Project; Leadership or fiduciary role in other board, society, committee or advocacy group, paid or unpaid, as a member of the GBD Scientific Council and a Member of WHO RGHS; all outside the submitted work. J A Singh reports consulting fees from Crealta/Horizon, Medisys, Fidia, PK Med, Two labs Inc, Adept Field Solutions, Clinical Care options, Clearview healthcare partners, Putnam associates, Focus forward, Navigant consulting, Spherix, MedIQ, Jupiter Life Science LLC, UBM LLC, Trio Health, Medscape, WebMD, and Practice Point communications, and the National Institutes of Health and the American College of Rheumatology; payment or honoraria for participating in the speakers bureau for Simply Speaking; support for attending meetings and/or travel from the steering committee of OMERACT, to attend their meeting every 2 years; participation on a Data Safety Monitoring Board or Advisory Board as an unpaid member of the FDA Arthritis Advisory Committee; leadership or fiduciary role in other board, society, committee or advocacy group, paid or unpaid, as a member of the steering committee of OMERACT, an international organization that develops measures for clinical trials and receives arm’s length funding from 12 pharmaceutical companies, with the Veterans Affairs Rheumatology Field Advisory Committee as Chair, and with the UAB Cochrane Musculoskeletal Group Satellite Center on Network Meta-analysis as a director and editor; stock or stock options in TPT Global Tech, Vaxart pharmaceuticals, Atyu Biopharma, Adaptimmune Therapeutics, GeoVax Labs, Pieris Pharmaceuticals, Enzolytics Inc, Series Therapeutics, Tonix Pharmaceuticals, and Charlotte’s Web Holdings Inc. and previously owned stock options in Amarin, Viking, and Moderna pharmaceuticals; all outside the submitted work. N Taveira reports grants or contracts from FCT and Aga Khan Development Network (AKDN) – Portugal Collaborative Research Network in Portuguese speaking countries in Africa (Project reference: 332821690) and from European & Developing Countries Clinical Trials Partnership (EDCTP), UE (Project reference: RIA2016MC-1615), as payments made to their institution, all outside the submitted work
    corecore