27 research outputs found

    Nadir CA-125 level as prognosis indicator of high-grade serous ovarian cancer

    Get PDF
    PURPOSE: The capacity of nadir CA-125 levels to predict the prognosis of epithelial ovarian cancer remains controversial. This study aimed to explore whether the nadir CA-125 serum levels could predict the durations of overall survival (OS) and progression free survival (PFS) in patients with high-grade serous ovarian cancer (HG-SOC) from the USA and PRC. MATERIALS AND METHODS: A total of 616 HG-SOC patients from the MD Anderson Cancer Center (MDACC, USA) between 1990 and 2011 were retrospectively analyzed. The results of 262 cases from the Jiangsu Institute of Cancer Research (JICR, PRC) between 1992 and 2011 were used to validate the MDACC data. The CA-125 immunohistochemistry assay was performed on 280 tissue specimens. The Cox proportional hazards model and the log-rank test were used to assess the associations between the clinicopathological characteristics and duration of survival. RESULTS: The nadir CA-125 level was an independent predictor of OS and PFS (p < 0.01 for both) in the MDACC patients. Lower nadir CA-125 levels (≤10 U/mL) were associated with longer OS and PFS (median: 61.2 and 16.8 months with 95% CI: 52.0–72.4 and 14.0–19.6 months, respectively) than their counterparts with shorter OS and PFS (median: 49.2 and 10.5 months with 95% CI: 41.7–56.7 and 6.9–14.1 months, respectively). The nadir CA-125 levels in JICR patients were similarly independent when predicting the OS and PFS (p < 0.01 for both). Nadir CA-125 levels less than or equal to 10 U/mL were associated with longer OS and PFS (median: 59.9 and 15.5 months with 95% CI: 49.7–70.1 and 10.6–20.4 months, respectively), as compared with those more than 10 U/mL (median: 42.0 and 9.0 months with 95% CI: 34.4–49.7 and 6.6–11.2 months, respectively). Baseline serum CA-125 levels, but not the CA-125 expression in tissues, were associated with the OS and PFS of HG-SOC patients in the MDACC and JICR groups. However, these values were not independent. Nadir CA-125 levels were not associated with the tumor burden based on second-look surgery (p = 0.09). Patients who achieved a pathologic complete response had longer OS and PFS (median: 73.7 and 20.7 months with 95% CI: 63.7–83.7 and 9.5–31.9 months, respectively) than those with residual tumors (median: 34.6 and 10.6 months with 95% CI: 6.9–62.3 and 4.9–16.3 months, respectively). CONCLUSIONS: The nadir CA-125 level was an independent predictor of OS and PFS in HG-SOC patients. Further prospective studies are required to clinically optimize the chances for a complete clinical response of HG-SOC cases with higher CA-125 levels (>10 U/mL) at the end of primary treatment

    Structural evolution and stability of plutonium oxide clusters

    No full text
    Plutonium oxide clusters have attracted great interest as potential complex for the separation or storage of radioactive plutonium elements. However, the structural stability, chemical bonding mechanism and maximum oxygen adsorption capacity for plutonium oxygen clusters are not well understood due to the difference between the radial distribution function and orbital energy of the plutonium atom. Here, we systematically study the structural evolution and electronic properties of plutonium oxygen clusters with cluster sizes n from 2 to 15 by using the CALYPSO cluster structural prediction method in combination with density functional theory (DFT) calculations. The low-lying isomers searched by the CALYPSO method are re-optimised at the theoretical level of B3LYP/ECP60MWB(Pu)/aug-cc-pVTZ(O). Relative stability results indicate that the PuO8 cluster with CS symmetry is the most stable cluster due to the large HOMO–LUMO gap (of 4.84 eV). The high stability of PuO8 cluster is predominantly attributed to the strong interactions between Pu-5f orbitals and O-2p orbitals. The Pu atom can chemically adsorb up to eight O atoms, and the corresponding adsorption energy is −3.84 eV. The present findings shed light on the complex chemical bonding and structural evolution mechanisms of plutonium oxide clusters, which may facilitate the rational design and the synthesis of other actinide-oxygen clusters. Plutonium chemically adsorbs eight oxygen atoms, and its high stability is attributed to the interactions between Pu-5f and O-2p orbitals.</p

    Mussel-Inspired Surface-Imprinted Sensors for Potentiometric Label-Free Detection of Biological Species

    No full text
    Using sensors to quantify clinically relevant biological species has emerged as a fascinating research field due to their potential to revolutionize clinical diagnosis and therapeutic monitoring. Taking advantage of the wide utility in clinical analysis and low cost of potentiometric ion sensors, we demonstrate a method to use such ion sensors to quantify bioanalytes without chemical labels. This is achieved by combination of chronopotentiometry with a mussel-inspired surface imprinting technique. The biomimetic sensing method is based on a blocking mechanism by which the recognition reaction between the surface imprinted polymer and a bioanalyte can block the current-induced ion transfer of an indicator ion, thus causing a potential change. The present method offers high sensitivity and excellent selectivity for detection of biological analytes. As models, trypsin and yeast cells can be measured at levels down to 0.03 UmL(-1) and 50 CFUmL(-1), respectively
    corecore