473 research outputs found

    The application of passive sampler (DGT) technology for improved understanding of metal behaviour at a marine disposal site

    Get PDF
    Metal behaviour and availability at a contaminated dredge material disposal site within UK waters has been investigated using Diffusive Gradient in Thin films (DGT) passive sampling technology. Three stations representing contrasting history and presence of maintenance dredge disposal, including a control station outside the disposal site, have been studied and depth profiles of fluxes of different metals (Fe, Mn, Pb, Cu, Cd, Cr, Ni, Zn) to the binding gel (Chelex 100) have been derived. Higher flux rates and shallower mobilisation of metals (Mn and Fe) to the binding gel were observed at the disposal stations compared to the control station. Here we describe metal mobilization at different depths, linking the remobilization of Fe2+ and Mn2+ to the sediment (re)supply of other heavy metals of interest with a focus on Cd, Ni and Pb and as they are on the Water Framework Directive (WFD) list of priority substances and OSPAR list of priority pollutants. Results showed that Cd, Pb and Ni exhibited signs of resupply at the sediment-water interface (SWI). There was a potential increased mobilisation and source to the water column of Pb and Ni at the disposal site stations, but there was no Cd source, despite higher total loadings. This information has the potential to improve our current understanding of metal cycles at disposal sites. This work can be used as an indication of likely metal bioavailability and also assist in determining whether the sites act as sources or sinks of heavy metals. This information could assist disposal site monitoring and dredge material licensing

    Diversity, biomass and ecosystem processes in the marine benthos.

    Get PDF
    Recent studies in terrestrial, plant-dominated systems have shown that reductions in diversity can affect essential ecosystem processes, especially productivity. However, the exact form of the relationship between diversity and ecosystem functions remains unknown, as does the relevance of these studies to other systems. We studied the relationships between macroinvertebrate species richness and ecosystem functions in a soft-bottom, intertidal system. We also considered, as a separate variable, the effects of macroinvertebrate biomass on ecosystem functions. A field experiment was conducted at Blackness, a mudflat in the Firth of Forth, Scotland, United Kingdom, using cages with different mesh sizes (195, 300, and 3000 ?m) to establish low, medium, and high species richness treatments through differential colonization of defaunated sediments. Low, medium, and high biomass treatments were established by enclosing differing amounts of ambient sediment in defaunated plots. Other treatments controlled for the effects of defaunation and caging. The experiment ran for six weeks in the summer of 1999. All treatments contained species within the same five main functional groups of macroinvertebrate, but species' identity varied both within and between treatments (thus species richness was considered a random, rather than fixed, variable). A total of 27 macroinvertebrate species were sampled across all treatments; 37% of these occurred in the low, 52% in the medium, and 74% in the high diversity treatments.At the end of the experiment, the following physical variables were measured as indicators of ecosystem functions such as sediment stabilization and nutrient fluxes: sediment shear strength (a measure of sediment cohesiveness), water content, silt/clay content, organic content, redox potential (a measure of anoxia), nitrate, nitrite, phosphate and ammonium fluxes, and community respiration. Changes in biomass and species richness were found to have significant effects on oxygen consumption; these relationships were driven in particular by the presence of the largest species in our study, Nephtys hombergii. All other variables were not significantly affected by the treatments. These results support the null hypotheses of no relationship between ecosystem functions and diversity and biomass. However, our experiment was necessarily limited in both spatial and temporal scale; the implications of this when scaling up to larger scale generalizations are discussed. Our results suggest that diversity/biomass/ecosystem function relationships in the soft sediment benthos are likely to be very complex and may depend more on functional groups than species richness

    Open Science in Software Engineering

    Full text link
    Open science describes the movement of making any research artefact available to the public and includes, but is not limited to, open access, open data, and open source. While open science is becoming generally accepted as a norm in other scientific disciplines, in software engineering, we are still struggling in adapting open science to the particularities of our discipline, rendering progress in our scientific community cumbersome. In this chapter, we reflect upon the essentials in open science for software engineering including what open science is, why we should engage in it, and how we should do it. We particularly draw from our experiences made as conference chairs implementing open science initiatives and as researchers actively engaging in open science to critically discuss challenges and pitfalls, and to address more advanced topics such as how and under which conditions to share preprints, what infrastructure and licence model to cover, or how do it within the limitations of different reviewing models, such as double-blind reviewing. Our hope is to help establishing a common ground and to contribute to make open science a norm also in software engineering.Comment: Camera-Ready Version of a Chapter published in the book on Contemporary Empirical Methods in Software Engineering; fixed layout issue with side-note

    Differences in biological traits composition of benthic assemblages between unimpacted habitats

    Get PDF
    There is an implicit requirement under contemporary policy drivers to understand the characteristics of benthic communities under anthropogenically-unimpacted scenarios. We used a trait-based approach on a large dataset from across the European shelf to determine how functional characteristics of unimpacted benthic assemblages vary between different sedimentary habitats. Assemblages in deep, muddy environments unaffected by anthropogenic disturbance show increased proportions of downward conveyors and surface deposit-feeders, while burrowing, diffusive mixing, scavenging and predation traits assume greater numerical proportions in shallower habitats. Deep, coarser sediments are numerically more dominated by sessile, upward conveyors and suspension feeders. In contrast, unimpacted assemblages of coarse sediments in shallower regions are proportionally dominated by the diffusive mixers, burrowers, scavengers and predators. Finally, assemblages of gravelly sediments exhibit a relatively greater numerical dominance of non-bioturbators and asexual reproducers. These findings may be used to form the basis of ranking habitats along a functional sensitivity gradient

    Peer support for the maintenance of physical activity and health in cancer survivors: the PEER trial - a study protocol of a randomised controlled trial

    Get PDF
    BACKGROUND: Despite an overwhelming body of evidence showing the benefits of physical activity (PA) and exercise for cancer survivors, few survivors meet the exercise oncology guidelines. Moreover, initiating, let alone maintaining exercise programs with cancer survivors continues to have limited success. The aim of this trial is to evaluate the influence of peer support on moderate-to-vigorous PA (MVPA) and various markers of health 12 months following a brief supervised exercise intervention in cancer survivors. METHODS: Men and women previously diagnosed with histologically-confirmed breast, colorectal or prostate cancer (n = 226), who are \u3e1-month post-treatment, will be invited to participate in this trial. Once enrolled, participants will complete 4 weeks (12 sessions) of supervised high intensity interval training (HIIT). On completion of the supervised phase, both groups will be provided with written recommendations and verbally encouraged to achieve three HIIT sessions per week, or equivalent exercise that meets the exercise oncology guidelines. Participants will be randomly assigned to receive 12 months of peer support, or no peer support (control). Primary and secondary outcomes will be assessed at baseline, after the 4-week supervised HIIT phase and at 3-, 6- and 12-months. Primary outcomes will include accelerometry-derived MVPA and prescribed HIIT session adherence; whilst secondary outcomes will include cardiorespiratory fitness ([Formula: see text]), body composition, quality of life and select cytokines, myokines and inflammatory markers. Random effects mixed modelling will be used to compare mean changes in outcomes between groups at each time point. A group x time interaction will be used to formally test for differences between groups (alpha =0.05); utilising intention-to-treat analyses. DISCUSSION: If successful, peer support may be proposed, adopted and implemented as a strategy to encourage cancer survivors to maintain exercise beyond the duration of a short-term, supervised intervention. A peer support-exercise model has the long-term potential to reduce comorbidities, improve physical and mental wellbeing, and significantly reduce the burden of disease in cancer survivors. ETHICS: Human Research Ethics Committee of Bellberry Ltd. (#2015-12-840). TRIAL REGISTRATION: Australian New Zealand Clinical Trial Registry 12618001855213 . Retrospectively registered 14 November 2018. Trial registration includes all components of the WHO Trial Registration Data Set, as recommended by the ICMJE

    Different bottom trawl fisheries have a differential impact on the status of the North Sea seafloor habitats

    Get PDF
    Fisheries using bottom trawls are the most widespread source of anthropogenic physical disturbance to seafloor habitats. To mitigate such disturbances, the development of fisheries-, conservation-, and ecosystem-based management strategies requires the assessment of the impact of bottom trawling on the state of benthic biota. We explore a quantitative and mechanistic framework to assess trawling impact. Pressure and impact indicators that provide a continuous pressure–response curve are estimated at a spatial resolution of 1 χ 1 min latitude and longitude (~2 km2) using three methods: L1 estimates the proportion of the community with a life span exceeding the time interval between trawling events; L2 estimates the decrease in median longevity in response to trawling; and population dynamic (PD) estimates the decrease in biomass in response to trawling and the recovery time. Although impact scores are correlated, PD has the best performance over a broad range of trawling intensities. Using the framework in a trawling impact assessment of ten métiers in the North Sea shows that muddy habitats are impacted the most and coarse habitats are impacted the least. Otter trawling for crustaceans has the highest impact, followed by otter trawling for demersal fish and beam trawling for flatfish and flyshooting. Beam trawling for brown shrimps, otter trawling for industrial fish, and dredging for molluscs have the lowest impact. Trawling is highly aggregated in core fishing grounds where the status of the seafloor is low but the catch per unit of effort (CPUE) per unit of impact is high, in contrast to peripheral grounds, where CPUE per unit of impact is low.</p

    Organism-sediment interactions govern post-hypoxia recovery of ecosystem functioning

    Get PDF
    Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning.

    Concurrent sampling of transitional and coastal waters by Diffusive Gradient in Thin-films (DGT) and spot sampling for trace metals analysis

    Get PDF
    This protocol was developed based on the knowledge acquired in the framework of the Interreg MONITOOL project (EAPA_565/2016) where extensive sampling campaigns were performed in transitional and coastal waters covering eight European countries. It provides detailed procedures and guidelines for the sampling of these waterbodies by concurrent collection of discrete water samples and the deployment of Diffusive Gradient in Thin-films (DGT) passive samplers for the measurement of trace metal concentrations. In order to facilitate the application of this protocol by end-users, it presents steps to follow in the laboratory prior to sampling campaigns, explains the procedures for field campaigns (including in situ measurement of supporting parameters) and subsequent sample processing in the laboratory in preparation for trace metal analyze by inductively coupled plasma-mass spectrometry (ICP-MS) and voltammetry. The protocol provides a systematic, coherent field sampling and sample preparation strategy that was developed in order to ensure comparability and reproducibility of the data obtained from each project Partner in different regions. • Standardization of the concurrent sampling of transitional and coastal waters by DGT passive samplers and spot sampling. • Robust procedures and tips based on existing international standards and comprehensive practical experience. • Links to demonstration videos produced within the MONITOOL project
    corecore