5 research outputs found

    Postural Control Processes During Static and Dynamic Activities in Autism Spectrum Disorder

    Get PDF
    Individuals with autism spectrum disorder (ASD) show multiple postural control deficits, including reduced postural stability during standing and reduced amplitude and frequency of anticipatory postural adjustments (APA) prior to planned movements. This study aims to identify mechanisms of postural control deficits in ASD during more challenging standing conditions including coordination of postural control processes used to support mediolateral (ML) and anteroposterior (AP) adjustments. We also examined APAs made during the initiation of walking to characterize predictive motor processes supporting postural control in ASD. Seventeen individuals with ASD were matched with 20 typically developing (TD) controls on age, gender ratio, nonverbal IQ, and body mass index (BMI). Participants completed three tests of postural control. During the first test, they stood with their feet shoulder width apart (neutral stance). During the second test, they stood with feet close together (Romberg one) in order to assess postural control during a more challenging standing condition in which the base of support is reduced. During the third test, participants stood with feet shoulder width apart and swayed their torso in a circle (circular sway). The standard deviation (SD) of their center of pressure (COP) in the ML and AP directions and the COP trajectory length were examined for each condition. We also assessed mutual information (MI), or the shared dependencies between COP in the ML and AP directions. Finally, individuals completed a step initiation task in which they took a step forward from one force platform to another. The APA amplitude and duration prior to stepping were measured, as were the maximum lateral sway during stepping, step distance, step velocity, and step duration. Individuals with ASD showed increased COP trajectory length relative to TD controls but no differences in COP SD during the standing tests. Compared to controls, participants with ASD showed greater levels of MI during static stance but reduced levels of MI during circular sway. During the step initiation task, groups did not differ on the amplitude or duration of APAs. During stepping, individuals with ASD showed reduced lateral sway, shorter step durations, and increased step velocity. Our finding that individuals with ASD show increased MI during circular sway suggests that they have a reduced ability to effectively coordinate distinct joint movements during dynamic postural adjustments. Our finding that individuals with ASD show reduced lateral sway when stepping suggests that motor rigidity may interfere with balance and gait in patients implicating basal ganglia circuits involved in guiding rapid or ballistic movements

    Postural control processes during standing and step initiation in autism spectrum disorder

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Background Individuals with autism spectrum disorder (ASD) show a reduced ability to maintain postural stability, though motor control mechanisms contributing to these issues and the extent to which they are associated with other gross motor activities (e.g., stepping) are not yet known. Methods Seventeen individuals with ASD and 20 typically developing (TD) controls (ages 6–19 years) completed three tests of postural control during standing. During the neutral stance, individuals stood with their feet shoulder width apart. During the Romberg one stance, they stood with feet close together. During the circular sway, participants stood with feet shoulder width apart and swayed in a circular motion. The standard deviation (SD) of their center of pressure (COP) in the mediolateral (ML) and anteroposterior (AP) directions and the COP trajectory length were examined for each stance. We also assessed mutual information (MI), or the shared dependencies between COP in the ML and AP directions. Participants also completed a stepping task in which they stepped forward from one force platform to an adjacent platform. The amplitude and duration of anticipatory postural adjustments (APAs) were examined, as were the maximum lateral sway, duration, and velocity of COP adjustments following the initial step. We examined stepping variables using separate one-way ANCOVAs with height as a covariate. The relationships between postural control and stepping measures and ASD symptom severity were assessed using Spearman correlations with scores on the Autism Diagnostic Observation Schedule–Second Edition (ADOS-2) and the Autism Diagnostic Interview-Revised (ADI-R). Results Individuals with ASD showed increased COP trajectory length across stance conditions (p = 0.05) and reduced MI during circular sway relative to TD controls (p = 0.02). During stepping, groups did not differ on APA amplitude (p = 0.97) or duration (p = 0.41), but during their initial step, individuals with ASD showed reduced ML sway (p = 0.06), reduced body transfer duration (p < 0.01), and increased body transfer velocity (p = 0.02) compared to controls. Greater neutral stance COPML variability (r = 0.55, p = 0.02) and decreased lateral sway (r = − 0.55, p = 0.02) when stepping were associated with more severe restricted and repetitive behaviors in participants with ASD. Conclusions We found that individuals with ASD showed reduced MI during circular sway suggesting a reduced ability to effectively coordinate joint movements during dynamic postural adjustments. Additionally, individuals with ASD showed reduced lateral sway when stepping indicating that motor rigidity may interfere with balance and gait. Postural control and stepping deficits were related to repetitive behaviors in individuals with ASD indicating that motor rigidity and key clinical issues in ASD may represent overlapping pathological processes

    Initial action output and feedback-guided motor behaviors in autism spectrum disorder

    Get PDF
    Background Sensorimotor issues are common in autism spectrum disorder (ASD), related to core symptoms, and predictive of worse functional outcomes. Deficits in rapid behaviors supported primarily by feedforward mechanisms, and continuous, feedback-guided motor behaviors each have been reported, but the degrees to which they are distinct or co-segregate within individuals and across development are not well understood. Methods We characterized behaviors that varied in their involvement of feedforward control relative to feedback control across skeletomotor (precision grip force) and oculomotor (saccades) control systems in 109 individuals with ASD and 101 age-matched typically developing controls (range: 5–29 years) including 58 individuals with ASD and 57 controls who completed both grip and saccade tests. Grip force was examined across multiple force (15, 45, and 85% MVC) and visual gain levels (low, medium, high). Maximum grip force also was examined. During grip force tests, reaction time, initial force output accuracy, variability, and entropy were examined. For the saccade test, latency, accuracy, and trial-wise variability of latency and accuracy were examined. Results Relative to controls, individuals with ASD showed similar accuracy of initial grip force but reduced accuracy of saccadic eye movements specific to older ages of our sample. Force variability was greater in ASD relative to controls, but saccade gain variability (across trials) was not different between groups. Force entropy was reduced in ASD, especially at older ages. We also find reduced grip strength in ASD that was more severe in dominant compared to non-dominant hands. Limitations Our age-related findings rely on cross-sectional data. Longitudinal studies of sensorimotor behaviors and their associations with ASD symptoms are needed. Conclusions We identify reduced accuracy of initial motor output in ASD that was specific to the oculomotor system implicating deficient feedforward control that may be mitigated during slower occurring behaviors executed in the periphery. Individuals with ASD showed increased continuous force variability but similar levels of trial-to-trial saccade accuracy variability suggesting that feedback-guided refinement of motor commands is deficient specifically when adjustments occur rapidly during continuous behavior. We also document reduced lateralization of grip strength in ASD implicating atypical hemispheric specialization

    Familiality of behavioral flexibility and response inhibition deficits in autism spectrum disorder (ASD)

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Background Diminished cognitive control, including reduced behavioral flexibility and behavioral response inhibition, has been repeatedly documented in autism spectrum disorder (ASD). We evaluated behavioral flexibility and response inhibition in probands and their parents using a family trio design to determine the extent to which these cognitive control impairments represent familial traits associated with ASD. Methods We examined 66 individuals with ASD (probands), 135 unaffected biological parents, and 76 typically developing controls. Participants completed a probabilistic reversal learning task (PRL) and a stop-signal task (SST) to assess behavioral flexibility and response inhibition respectively. Rates of PRL and SST errors were examined across groups, within families, and in relation to clinical and subclinical traits of ASD. Based on prior findings that subclinical broader autism phenotypic (BAP) traits may co-segregate within families and reflect heritable risk factors, we also examined whether cognitive control deficits were more prominent in families in which parents showed BAP features (BAP+). Results Probands and parents each showed increased rates of PRL and SST errors relative to controls. Error rates across tasks were not related. SST error rates inter-correlated among probands and their parents. PRL errors were more severe in BAP+ parents and their children relative to BAP− parents and their children. For probands of BAP+ parents, PRL and SST error rates were associated with more severe social-communication abnormalities and repetitive behaviors, respectively. Conclusion Reduced behavioral flexibility and response inhibition are present among probands and their unaffected parents, but represent unique familial deficits associated with ASD that track with separate clinical issues. Specifically, behavioral response inhibition impairments are familial in ASD and manifest independently from parental subclinical features. In contrast, behavioral flexibility deficits are selectively present in families with BAP characteristics, suggesting they co-segregate in families with parental subclinical social, communication, and rigid personality traits. Together, these findings provide evidence that behavioral flexibility and response inhibition impairments track differentially with ASD risk mechanisms and related behavioral traits
    corecore