103 research outputs found

    Processing Characteristics, Composition, Shelf-life, and Sensory Attributes of Beef Bacon Manufactured From Seven Value-Added Cuts of Beef

    Get PDF
    The purpose of this study was to evaluate the influence of different beef cuts on their potential for adding value by assessing processing characteristics, composition, shelf-life, and sensory attributes of these cuts as beef bacon. Six briskets (Institutional Meat Purchase Specification [IMPS]#120), 6 clod hearts (IMPS#114E; divided horizontally into 2 halves: silver-skin side and non–silver-skin side), 6 flanks (IMPS#193), 6 outside flats (IMPS#171B), and 7 short plates (IMPS#121A; cut into a deboned short-rib half and navel half) were sourced commercially from separate Canadian quality grade AA beef carcasses. Data for processing yields, composition, and image analysis were analyzed as a generalized linear mixed model with fixed effect of cut and random effect of replication nested within block (processing group). Sensory data collected using a trained sensory panel were analyzed in the same manner, with an additional fixed effect of storage day and additional random effects of session and panelist. Rested pump uptake, which was targeted at 20%, was not different (P = 0.21) among cuts; however, smokehouse cook yield differed (P < 0.01) among cuts, with heavier cuts (brisket, plate cuts, and outside flat) generally having greater yields compared with lighter cuts (clod cuts and flank). As expected, composition of bacon slices was affected (P < 0.01) by cut, with leaner cuts (clod cuts, flank, and outside flat) having greater moisture, lower lipid levels, and greater protein compared with fatter cuts (brisket and plate cuts). Sensory analysis revealed significant differences in muscle fiber toughness and connective tissue among cuts. The differences that were quantified in this study should allow manufacturers to tailor their cut selection to the processing specifications that may be most profitable and well-suited for the meat industry and its customer base. Overall, this research should help define beef bacon and further indicate that a variety of beef cuts can be used to manufacture beef bacon

    Red Beetroot. A Potential Source of Natural Additives for the Meat Industry

    Get PDF
    Currently, the food industry is looking for alternatives to synthetic additives in processed food products, so research investigating new sources of compounds with high biological activity is worthwhile and becoming more common. There are many dierent types of vegetables that contain bioactive compounds, and additional features of some vegetables include uses as natural colorants and antioxidants. In this sense, and due to the special composition of beetroot, the use of this vegetable allows for the extraction of a large number of compounds with special interest to the meat industry. This includes colorants (betalains), antioxidants (betalains and phenolic compounds), and preservatives (nitrates), which can be applied for the reformulation of meat products, thus limiting the number and quantity of synthetic additives added to these foods and, at the same time, increase their shelf-life. Despite all these benefits, the application of beetroot or its products (extracts, juice, powder, etc.) in the meat industry is very limited, and the body of available research on beetroot as an ingredient is scarce. Therefore, in this review, the main biologically active compounds present in beetroot, the implications and benefits that their consumption has for human health, as well as studies investigating the use beetroot in the reformulation of meat and meat products are presented in a comprehensible manner

    Recent discoveries in the field of lipid bio-based ingredients for meat processing

    Get PDF
    Current culture and pace of lifestyle, together with consumer demand for ready-to-eat foods, has influenced the food industry, particularly the meat sector. However, due to the important role that diet plays in human health, consumers demand safe and healthy food products. As a consequence, even foods that meet expectations for convenience and organoleptic properties must also meet expectations from a nutritional standpoint. One of the main nutritionally negative aspects of meat products is the content and composition of fat. In this sense, the meat industry has spent decades researching the best strategies for the reformulation of traditional products, without having a negative impact in technological processes or in the sensory acceptance of the final product. However, the enormous variety of meat products as well as industrial and culinary processes means that a single strategy cannot be established, despite the large volume of work carried out in this regard. Therefore, taking all the components of this complex situation into account and utilizing the large amount of scientific information that is available, this review aims to comprehensively analyze recent advances in the use of lipid bio-based materials to reformulate meat products, as well as their nutritional, technological, and sensorial implications.Axencia Galega de InnovaciĂłn | Ref. IN607A2019 / 01Ministerio de EconomĂ­a y Competitividad | Ref. FJCI-2016-29486CYTED | Ref. 119RT056

    Enzymatically Treated Spent Cellulose Sausage Casings as an Ingredient in Beef Emulsion Systems

    Get PDF
    The objective of this research was to incorporate an ingredient obtained from spent cellulose casings in beef emulsion modeling systems. The test ingredient (residual sausage casing [RSC]) was procured from cellulose sausage casings following thermal processing of the sausages. The casings were cleaned of contaminants before a combination of enzymatic hydrolysis and high-speed homogenization was conducted in an effort to improve the functional attributes of the cellulose casing residue (i.e., recycling/upcycling of the spent casings). The beef emulsion modeling systems used in this study consisted of 57.30% beef, 20% water, 15% olive oil, 6% of the combination of RSC and an all-purpose binder, 1.45% NaCl, 0.40% sodium tri-polyphosphate, 0.15% sodium nitrite cure, and 0.0035% sodium erythorbate. The overlying goal was to test the ability of the RSC ingredient as a partial or full replacement of binder ingredients in a beef emulsion system. Therefore, the beef emulsion model systems were prepared with 5 different levels of the RSC ingredient (0% RSC, 25% RSC, 50% RSC, 75% RSC, and 100% RSC). This study was independently replicated in its entirety 3 times (n = 3) in a completely randomized design, and data were analyzed using a generalized linear mixed statistical model. Emulsion samples were tested for proximate composition, cooking loss, emulsion stability, texture profile analysis, and instrumental color. Overall, technological properties and emulsion stability were lost as the level of the RSC ingredient increased, but low levels of the RSC ingredient (25% RSC) may help maintain acceptable levels of yield and emulsion stability while improving the sustainability of the sausage production system

    Cooking loss, texture properties, and color of comminuted beef prepared with breadfruit (Artocarpus altilis) flour

    Get PDF
    Cooking loss, texture properties, and color of comminuted beef when prepared with breadfruit (Artocarpus altilis) flour or other flour sources was evaluated using 2 separate studies. Flour sources tested in these studies (against a negative control with no added flour) were breadfruit flour, soy flour, corn flour, wheat flour, and tapioca flour. Study 1: Finely minced, comminuted beef batters (extra lean beef targeted to 97% lean and 3% fat, salt, and ice/water) prepared with inclusion levels of 0, 1, 2, 3, 4, and 5% flour were evaluated for cooking loss and texture. Cooking loss was reduced (P < 0.05) in comminuted beef prepared with breadfruit flour compared with those not prepared with flour and cooking loss decreased as breadfruit flour inclusion level increased (Linear P < 0.01). Hardness was not different (P = 0.49) in comminuted beef prepared with breadfruit flour compared with soy flour, and was much less (P < 0.01) compared with the 3 other flour sources at each inclusion level. Study 2: Comminuted beef (lean beef targeted to 90% lean and 10% fat, salt, and ice/water) with inclusion levels of 0, 2.5, and 5% flour were formed into patties and were evaluated for color over a simulated retail display period. Redness values (a*) of comminuted beef prepared with breadfruit flour were the greatest (P < 0.05) during the 7-d simulated retail display compared with all other treatments, including control samples with no flour. Overall, the results indicated that breadfruit flour could be effectively used as an ingredient in comminuted beef to produce similar texture as observed with soy flour, while actually improving redness values beyond that of other flour sources

    Protein oxidation in muscle foods: a comprehensive review

    Get PDF
    Muscle foods and their products are a fundamental part of the human diet. The high protein content found in muscle foods, as well as the high content of essential amino acids, provides an appropriate composition to complete the nutritional requirements of humans. However, due to their special composition, they are susceptible to oxidative degradation. In this sense, proteins are highly susceptible to oxidative reactions. However, in contrast to lipid oxidation, which has been studied in depth for decades, protein oxidation of muscle foods has been investigated much less. Moreover, these reactions have an important influence on the quality of muscle foods, from physico-chemical, techno-functional, and nutritional perspectives. In this regard, the loss of essential nutrients, the impairment of texture, water-holding capacity, color and flavor, and the formation of toxic substances are some of the direct consequences of protein oxidation. The loss of quality for muscle foods results in consumer rejection and substantial levels of economic losses, and thus the control of oxidative processes is of vital importance for the food industry. Nonetheless, the complexity of the reactions involved in protein oxidation and the many different factors that influence these reactions make the mechanisms of protein oxidation difficult to fully understand. Therefore, the present manuscript reviews the fundamental mechanisms of protein oxidation, the most important oxidative reactions, the main factors that influence protein oxidation, and the currently available analytical methods to quantify compounds derived from protein oxidation reactions. Finally, the main effects of protein oxidation on the quality of muscle foods, both from physico-chemical and nutritional points of view, are also discussed.The authors thank GAIN (Axencia Galega de Innovación) for supporting this review (grant number IN607A2019/01). Some authors (R.D., M.P., P.E.S.M., and J.M.L.) are members of the HealthyMeat network, funded by CYTED (ref. 119RT0568). The research leading to these results was supported by MICINN supporting the Ramón y Cajal grant for M.A. Prieto (RYC-2017-22891); by Xunta de Galicia for supporting the program EXCELENCIA-ED431F 2020/12; and the pre-doctoral grants of P. Garcia-Oliveira (ED481A-2019/295) and M. Carpena (ED481A 2021/313). The authors are grateful to the Ibero-American Program on Science and Technology (CYTED—AQUA-CIBUS, P317RT0003) and to the Bio Based Industries Joint Undertaking (JU) under grant agreement No 888003 UP4HEALTH Project (H2020-BBI-JTI-2019). The JU receives support from the European Union’s Horizon 2020 research and innovation program and the Bio Based Industries Consortium. The project SYSTEMIC Knowledge hub on Nutrition and Food Security has received funding from national research funding parties in Belgium (FWO), France (INRA), Germany (BLE), Italy (MIPAAF), Latvia (IZM), Norway (RCN), Portugal (FCT), and Spain (AEI) in a joint action of JPI HDHL, JPI-OCEANS, and FACCE-JPI launched in 2019 under the ERA-NET ERA-HDHL (n 696295).info:eu-repo/semantics/publishedVersio

    Enzymatically Treated Spent Cellulose Sausage Casings as an Ingredient in Beef Emulsion Systems

    Get PDF
    The objective of this research was to incorporate an ingredient obtained from spent cellulose casings in beef emulsion modeling systems. The test ingredient (residual sausage casing, RSC) was procured from cellulose sausage casings following thermal processing of the sausages. The casings were cleaned of contaminants before a combination of enzymatic hydrolysis and high-speed homogenization was conducted in an effort to improve the functional attributes of the cellulose casing residue (i.e. recycling/upcycling of the spent casings). The beef emulsion modeling systems used in this study consisted of 57.30% beef, 20% water, 15% olive oil, 6% of the combination of RSC and an all-purpose binder, 1.45% NaCl, 0.40% sodium tri-polyphosphate, 0.15% sodium nitrite cure, and 0.0035% sodium erythorbate. The overlying goal here was to test the ability of the RSC ingredient for partial or full replacement of binder ingredients in a beef emulsion system. Therefore, the beef emulsion model systems were prepared with five different levels of the RSC ingredient as a substitution to an all-purpose binder ingredient (0% RSC, 25% RSC, 50% RSC, 75% RSC, and 100% RSC). This study was independently replicated in its entirety three times in a completely randomized design and data were analyzed using a generalized linear mixed statistical model. Emulsion samples were tested for proximate composition, cooking loss, emulsion stability, texture profile analysis, and instrumental color. Overall, technological properties and emulsion stability were lost as the level of the RSC ingredient increased, but low inclusion levels of the RSC ingredient (25% RSC) may help maintain acceptable levels of yield and emulsion stability, while improving the sustainability of the sausage production system

    The Vehicle, Spring 2002

    Get PDF
    Table of Contents Black Lace Under White OxfordAmee Bohrerpage 4 We Have ForgottenAubrey Bonannopage 4 The Grand Old Drink of the SouthNatalie Espositopage 5 SymphonyChristie Jean Hallpage 6 Sol from the CityJeremy Hartzellpage 7-10 Yellow TimeErika Larsonpage 10 Death of a Salesman\u27s WifeErika Larsonpage 11-12 This SideErika Larsonpage 12 JuiceTimothy Lockmanpage 13 Chess GameMike Scalespage 13 Facing HimTimothy Lockmanpage 14 ShameRon Lybargerpage 15 Sunlit HydrantMike Scalespage 15 11-22-63Reginald Mansfieldpage 16 four cornersDave Moutraypage 17 regretting PamDave Moutraypage 18-19 Chicago SummertimeLisa Sarmpage 19 Hands of TimeJessica Shekletonpage 20 An AppointmentJosh Sopiarzpage 21 Our Fates and Old Men\u27s GlassesJosh Sopiarzpage 22 An Apple Orchard PicnicJosh Sopiarzpage 23 November GraysJoe Webbpage 24 The AxJanet Windeguthpage 25-31 The Old Porch SwingJoe Webbpage 32 Green MachineQynn McCrory, H.S. Writing Contest Winnerpage 33 My Little PonyJ. Benjamin Blount, H.S. Writing Contest Winnerpage 34 Biographiespage 35-36https://thekeep.eiu.edu/vehicle/1077/thumbnail.jp

    Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions

    Get PDF
    Wetland methane (CH4) emissions (FCH4) are important in global carbon budgets and climate change assessments. Currently, FCH4 projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent FCH4 temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that FCH4 are often controlled by factors beyond temperature. Here, we evaluate the relationship between FCH4 and temperature using observations from the FLUXNET-CH4 database. Measurements collected across the globe show substantial seasonal hysteresis between FCH4 and temperature, suggesting larger FCH4 sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH4 production are thus needed to improve global CH4 budget assessments. Wetland methane emissions contribute to global warming, and are oversimplified in climate models. Here the authors use eddy covariance measurements from 48 global sites to demonstrate seasonal hysteresis in methane-temperature relationships and suggest the importance of microbial processes.Peer reviewe
    • …
    corecore