846 research outputs found

    Absolute Flux Calibration of the IRAC Instrument on the Spitzer Space Telescope using Hubble Space Telescope Flux Standards

    Get PDF
    The absolute flux calibration of the James Webb Space Telescope will be based on a set of stars observed by the Hubble and Spitzer Space Telescopes. In order to cross-calibrate the two facilities, several A, G, and white dwarf (WD) stars are observed with both Spitzer and Hubble and are the prototypes for a set of JWST calibration standards. The flux calibration constants for the four Spitzer IRAC bands 1-4 are derived from these stars and are 2.3, 1.9, 2.0, and 0.5% lower than the official cold-mission IRAC calibration of Reach et al. (2005), i.e. in agreement within their estimated errors of ~2%. The causes of these differences lie primarily in the IRAC data reduction and secondarily in the SEDs of our standard stars. The independent IRAC 8 micron band-4 fluxes of Rieke et al. (2008) are about 1.5 +/- 2% higher than those of Reach et al. and are also in agreement with our 8 micron result.Comment: 16 pages, 6 figure

    Hubble Space Telescope Spectroscopy of the Balmer lines in Sirius B

    Full text link
    Sirius B is the nearest and brightest of all white dwarfs, but it is very difficult to observe at visible wavelengths due to the overwhelming scattered light contribution from Sirius A. However, from space we can take advantage of the superb spatial resolution of the Hubble Space Telescope to resolve the A and B components. Since the closest approach in 1993, the separation between the two stars has become increasingly favourable and we have recently been able to obtain a spectrum of the complete Balmer line series for Sirius B using HST?s Space Telescope Imaging Spectrograph (STIS). The quality of the STIS spectra greatly exceed that of previous ground-based spectra, and can be used to provide an important determination of the stellar temperature (Teff = 25193K) and gravity (log g = 8.556). In addition we have obtained a new, more accurate, gravitational red-shift of 80.42 +/- 4.83 km s-1 for Sirius B. Combining these results with the photometric data and the Hipparcos parallax we obtain new determinations of the stellar mass for comparison with the theoretical mass-radius relation. However, there are some disparities between the results obtained independently from log g and the gravitational redshift which may arise from flux losses in the narrow 50x0.2arcsec slit. Combining our measurements of Teff and log g with the Wood (1995) evolutionary mass-radius relation we get a best estimate for the white dwarf mass of 0.978 M. Within the overall uncertainties, this is in agreement with a mass of 1.02 M obtained by matching our new gravitational red-shift to the theoretical M/R relation.Comment: 11 pages, 6 figures, accepted for publication in the Monthly Notices of the Royal Astronomical Societ

    Faint NUV/FUV Standards from Swift/UVOT, GALEX and SDSS Photometry

    Full text link
    At present, the precision of deep ultraviolet photometry is somewhat limited by the dearth of faint ultraviolet standard stars. In an effort to improve this situation, we present a uniform catalog of eleven new faint (u sim17) ultraviolet standard stars. High-precision photometry of these stars has been taken from the Sloan Digital Sky Survey and Galaxy Evolution Explorer and combined with new data from the Swift Ultraviolet Optical Telescope to provide precise photometric measures extending from the Near Infrared to the Far Ultraviolet. These stars were chosen because they are known to be hot (20,000 < T_eff < 50,000 K) DA white dwarfs with published Sloan spectra that should be photometrically stable. This careful selection allows us to compare the combined photometry and Sloan spectroscopy to models of pure hydrogen atmospheres to both constrain the underlying properties of the white dwarfs and test the ability of white dwarf models to predict the photometric measures. We find that the photometry provides good constraint on white dwarf temperatures, which demonstrates the ability of Swift/UVOT to investigate the properties of hot luminous stars. We further find that the models reproduce the photometric measures in all eleven passbands to within their systematic uncertainties. Within the limits of our photometry, we find the standard stars to be photometrically stable. This success indicates that the models can be used to calibrate additional filters to our standard system, permitting easier comparison of photometry from heterogeneous sources. The largest source of uncertainty in the model fitting is the uncertainty in the foreground reddening curve, a problem that is especially acute in the UV.Comment: Accepted for publication in Astrophysical Journal. 31 pages, 13 figures, electronic tables available from ApJ or on reques

    Daytime habitat selection for juvenile parr brown trout (Salmo trutta) in small lowland streams

    Get PDF
    Physical habitat is important in determining the carrying capacity of juvenile brown trout, and within freshwater management. Summer daytime physical habitat selection for the parr lifestage (7–20 cm) juvenile brown trout (Salmo trutta) was assessed in 6 small lowland streams. Habitat preference was determined for the four variables; water velocity, water depth, substrate and cover, and the preferences for physical habitat selection were expressed in terms of habitat suitability indices (HSI’s). The statistical confidence of HSI’s was evaluated using power analysis. It was found that a minimum of 22 fish observations was needed to have statistical confidence in the HSIs for water depth, and a minimum of 92 fish observations for water velocity during daytime summer conditions. Generally parr were utilising the deeper habitats, indicating preference for deeper water. Cover was also being selected for at all sites, but selection was inconsistent among sites for the variables substrate and velocity. The results indicate that during daytime summer conditions water depth is a significant variable for parr habitat selection in these small lowland streams, with cover also being important. Therefore, daytime refugia may be a critical limiting factor for parr in small lowland streams, and important for stream management actions under the Water Framework Directive

    Statistical properties of the GALEX spectroscopic stellar sample

    Full text link
    The GALEX General Data Release 4/5 includes 174 spectroscopic tiles, obtained from slitless grism observations, for a total of more than 60,000 ultraviolet spectra. We have determined statistical properties of the sample of GALEX stars. We have defined a suitable system of spectroscopic indices, which measure the main mid-UV features at the GALEX low spectral resolution and we have employed it to determine the atmospheric parameters of of stars in the range 4500<Teff<9000 K. Our preliminary results indicate that the sample is formed by a majority of main sequence F- and G-type stars, with metallicity [M/H]>-1 dex.Comment: 9 pages, 9 figures, accepted for publication in Astrophysics & Space Science, UV universe special issu

    Convection, Thermal Bifurcation, and the Colors of A stars

    Get PDF
    Broad-band ultraviolet photometry from the TD-1 satellite and low dispersion spectra from the short wavelength camera of IUE have been used to investigate a long-standing proposal of Bohm-Vitense that the normal main sequence A- and early-F stars may divide into two different temperature sequences: (1) a high temperature branch (and plateau) comprised of slowly rotating convective stars, and (2) a low temperature branch populated by rapidly rotating radiative stars. We find no evidence from either dataset to support such a claim, or to confirm the existence of an "A-star gap" in the B-V color range 0.22 <= B-V <= 0.28 due to the sudden onset of convection. We do observe, nonetheless, a large scatter in the 1800--2000 A colors of the A-F stars, which amounts to ~0.65 mags at a given B-V color index. The scatter is not caused by interstellar or circumstellar reddening. A convincing case can also be made against binarity and intrinsic variability due to pulsations of delta Sct origin. We find no correlation with established chromospheric and coronal proxies of convection, and thus no demonstrable link to the possible onset of convection among the A-F stars. The scatter is not instrumental. Approximately 0.4 mags of the scatter is shown to arise from individual differences in surface gravity as well as a moderate spread (factor of ~3) in heavy metal abundance and UV line blanketing. A dispersion of ~0.25 mags remains, which has no clear and obvious explanation. The most likely cause, we believe, is a residual imprecision in our correction for the spread in metal abundances. However, the existing data do not rule out possible contributions from intrinsic stellar variability or from differential UV line blanketing effects owing to a dispersion in microturbulent velocity.Comment: 40 pages, 14 figures, 1 table, AAS LaTex, to appear in The Astrophysical Journa

    The HII region G35.673-00.847: another case of triggered star formation?

    Get PDF
    As part of a systematic study that we are performing with the aim to increase the observational evidence of triggered star formation in the surroundings of HII regions, we analyze the ISM around the HII region G35.673-00.847, a poorly studied source. Using data from large-scale surveys: Two Micron All Sky Survey, Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE), MIPSGAL, Galactic Ring Survey (GRS), VLA Galactic Plane Survey (VGPS), and NRAO VLA Sky Survey (NVSS) we performed a multiwavelength study of G35.673-00.847 and its surroundings. The mid IR emission, shows that G35.673-00.847 has an almost semi-ring like shape with a cut towards the galactic west. The radius of this semi-ring is about 1.5' (~1.6 pc, at the distance of ~3.7 kpc). The distance was estimated from an HI absorption study and from the analysis of the molecular gas. Indeed, we find a molecular shell composed by several clumps distributed around the HII region, suggesting that its expansion is collecting the surrounding material. We find several YSO candidates over the molecular shell. Finally, comparing the HII region dynamical age and the fragmentation time of the molecular shell, we discard the collect and collapse as the mechanism responsible for the YSOs formation, suggesting other processes such as radiative driven implosion and/or small-scale Jeans gravitational instabilities.Comment: Accepted for publication in A&A, 18 October 2010. Some figures were degraded to reduce file siz

    Induction of viral mimicry upon loss of DHX9 and ADAR1 in breast cancer cells

    Get PDF
    UNLABELLED: Detection of viral double-stranded RNA (dsRNA) is an important component of innate immunity. However, many endogenous RNAs containing double-stranded regions can be misrecognized and activate innate immunity. The IFN-inducible ADAR1-p150 suppresses dsRNA sensing, an essential function for adenosine deaminase acting on RNA 1 (ADAR1) in many cancers, including breast. Although ADAR1-p150 has been well established in this role, the functions of the constitutively expressed ADAR1-p110 isoform are less understood. We used proximity labeling to identify putative ADAR1-p110-interacting proteins in breast cancer cell lines. Of the proteins identified, the RNA helicase DHX9 was of particular interest. Knockdown of DHX9 in ADAR1-dependent cell lines caused cell death and activation of the dsRNA sensor PKR. In ADAR1-independent cell lines, combined knockdown of DHX9 and ADAR1, but neither alone, caused activation of multiple dsRNA sensing pathways leading to a viral mimicry phenotype. Together, these results reveal an important role for DHX9 in suppressing dsRNA sensing by multiple pathways. SIGNIFICANCE: These findings implicate DHX9 as a suppressor of dsRNA sensing. In some cell lines, loss of DHX9 alone is sufficient to cause activation of dsRNA sensing pathways, while in other cell lines DHX9 functions redundantly with ADAR1 to suppress pathway activation

    Comparing Galaxy Morphology at Ultraviolet and Optical Wavelengths

    Get PDF
    We have undertaken an imaging survey of 34 nearby galaxies in far-ultraviolet (FUV, ~1500A) and optical (UBVRI) passbands to characterize galaxy morphology as a function of wavelength. This sample, which includes a range of classical Hubble types from elliptical to irregular with emphasis on spirals at low inclination angle, provides a valuable database for comparison with images of high-z galaxies whose FUV light is redshifted into the optical and near- infrared bands. Ultraviolet data are from the UIT Astro-2 mission. We present images and surface brightness profiles for each galaxy, and we discuss the wavelength-dependence of morphology for different Hubble types in the context of understanding high-z objects. In general, the dominance of young stars in the FUV produces the patchy appearance of a morphological type later than that inferred from optical images. Prominent rings and circumnuclear star formation regions are clearly evident in FUV images of spirals, while bulges, bars, and old, red stellar disks are faint to invisible at these short wavelengths. However, the magnitude of the change in apparent morphology ranges from dramatic in early--type spirals with prominent optical bulges to slight in late-type spirals and irregulars, in which young stars dominate both the UV and optical emission. Starburst galaxies with centrally concentrated, symmetric bursts display an apparent ``E/S0'' structure in the FUV, while starbursts associated with rings or mergers produce a peculiar morphology. We briefly discuss the inadequacy of the optically-defined Hubble sequence to describe FUV galaxy images and estimate morphological k-corrections, and we suggest some directions for future research with this dataset.Comment: Accepted for publication in the ApJS. 15 pages, 17 JPEG figures, 10 GIF figures. Paper and full resolution figures available at http://nedwww.ipac.caltech.edu/level5/Kuchinski/frames.htm

    Synthetic Mid-UV Spectroscopic Indices of Stars

    Get PDF
    Using the UVBLUE library of synthetic stellar spectra we have computed a set of mid-UV line and continuum spectroscopic indices. We explore their behavior in terms of the leading stellar parameters [T_eff,log(g)]. The overall result is that synthetic indices follow the general trends depicted by those computed from empirical databases. Separately we also examine the index sensitivity to changes in chemical composition, an analysis only feasible under a theoretical approach. In this respect, lines indices FeI3000, BL3096 and MgI2852 and the continuum index 2828/2921 are the least sensitive features, an important characteristic to be taken into account for the analyses of integrated spectra of stellar systems. We also quantify the effects of instrumental resolution on the indices and find that indices display variations up to 0.1 mag in the resolution interval between 6-10 angstrom of FWHM. We discuss the extent to which synthetic indices are compatible with indices measured in spectra collected by the International Ultraviolet Explorer (IUE). Five line and continuum indices (FeI3000, 2110/2570, 2828/2921, S2850, and S2850L) display a remarkable good correlation with observations. The rest of the indices are either underestimated or overestimated, however, two of them, MgWide and BL3096, display only marginal discrepancies. For 11 indices we give the coefficients to convert synthetic indices to the IUE system. This work represents the first attempt to synthesize mid-UV indices from high resolution theoretical spectra and foresees important applications for the study of the ultraviolet morphology of old stellar aggregates.Comment: 20 pages, 6 figures; accepted for publication in The Astrophysical Journa
    • 

    corecore