53 research outputs found

    UV-optical from space

    Get PDF
    The following subject areas are covered: (1) the science program (star formation and origins of planetary systems; structure and evolution of the interstellar medium; stellar population; the galactic and extragalactic distance scale; nature of galaxy nuclei, AGNs, and QSOs; formation and evolution of galaxies at high redshifts; and cosmology); (2) implementation of the science program; (3) the observatory-class missions (HST; LST - the 6m successor to HST; and next-generation 16m telescope); (4) moderate and small missions (Delta-class Explorers; imaging astrometric interferometer; small Explorers; optics development and demonstrations; and supporting ground-based capabilities); (5) prerequisites - the current science program (Lyman-FUSE; HTS optimization; the near-term science program; data analysis, modeling, and theory funding; and archives); (6) technologies for the next century; and (7) lunar-based telescopes and instruments

    Some Results in the Hyperinvariant Subspace Problem and Free Probability

    Get PDF
    This dissertation consists of three more or less independent projects. In the first project, we find the microstates free entropy dimension of a large class of L1[0; 1]{ circular operators, in the presence of a generator of the diagonal subalgebra. In the second one, for each sequence {cn}n in l1(N), we de fine an operator A in the hyper finite II1-factor R. We prove that these operators are quasinilpotent and they generate the whole hyper finite II1-factor. We show that they have non-trivial, closed, invariant subspaces affiliated to the von Neumann algebra, and we provide enough evidence to suggest that these operators are interesting for the hyperinvariant subspace problem. We also present some of their properties. In particular, we show that the real and imaginary part of A are equally distributed, and we find a combinatorial formula as well as an analytical way to compute their moments. We present a combinatorial way of computing the moments of A*A. Finally, let fTkg1k =1 be a family of *-free identically distributed operators in a finite von Neumann algebra. In this paper, we prove a multiplicative version of the Free Central Limit Theorem. More precisely, let Bn = T*1T*2...T*nTn...T2T1 then Bn is a positive operator and B1=2n n converges in distribution to an operator A. We completely determine the probability distribution v of A from the distribution u of jTj2. This gives us a natural map G : M M with u G(u) = v. We study how this map behaves with respect to additive and multiplicative free convolution. As an interesting consequence of our results, we illustrate the relation between the probability distribution v and the distribution of the Lyapunov exponents for the sequence fTkg1k=1 introduced by Vladismir Kargin

    International Ultraviolet Explorer (IUE) ultraviolet spectral atlas of selected astronomical objects

    Get PDF
    The IUE Ultraviolet Spectral Atlas of Selected Astronomical Objects (or 'the Atlas'), is based on the data that were available in the IUE archive in 1986, and is intended to be a quick reference for the ultraviolet spectra of many categories of astronomical objects. It shows reflected sunlight from the Moon, planets, and asteroids, and also shows emission from comets. Comprehensive compilations of UV spectra for main sequence, subgiant, giant, bright giant, and supergiant stars are published elsewhere. This Atlas contains the spectra for objects occupying other areas of the Hertzsprung-Russell diagram: pre-main sequence stars, chemically peculiar stars, pulsating variables, subluminous stars, and Wolf-Rayet stars. This Atlas also presents phenomena such as the chromospheric and transition region emissions from late-type stars; composite spectra of stars, gas streams, accretion disks and gas envelopes of binary systems; the behavior of gas ejecta shortly after the outburst of novac and supernovac; and the H II regions, planetary nebulae, and supernova remnants. Population 2 stars, globular clusters, and luminous stars in the Magellanic Clouds, M31, and M33, are also included in this publication. Finally, the Atlas gives the ultraviolet spectra of galaxies of different Hubble types and of active galaxies

    Intrinsic Absorption Lines in Seyfert 1 Galaxies. I. Ultraviolet Spectra from the Hubble Space Telescope

    Full text link
    We present a study of the intrinsic absorption lines in the ultraviolet spectra of Seyfert 1 galaxies. We find that the fraction of Seyfert 1 galaxies that show absorption associated with their active nuclei is more than one-half (10/17), which is much higher than previous estimates (3 - 10%) . There is a one-to-one correspondence between Seyferts that show intrinsic UV absorption and X-ray ``warm absorbers''. The intrinsic UV absorption is generally characterized by high ionization: C IV and N V are seen in all 10 Seyferts with detected absorption (in addition to Ly-alpha), whereas Si IV is present in only four of these Seyferts, and Mg II absorption is only detected in NGC 4151. The absorption lines are blueshifted (or in a few cases at rest) with respect to the narrow emission lines, indicating that the absorbing gas is undergoing net radial outflow. At high resolution, the absorption often splits into distinct kinematic components that show a wide range in widths (20 - 400 km/s FWHM), indicating macroscopic motions (e.g., radial velocity subcomponents or turbulence) within a component. The strong absorption components have cores that are much deeper than the continuum flux levels, indicating that the regions responsible for these components lie completely outside of the broad emission-line regions. The covering factor of the absorbing gas in the line of sight, relative to the total underlying emission, is C > 0.86, on average. The global covering factor, which is the fraction of emission intercepted by the absorber averaged over all lines of sight, is C > 0.5.Comment: 56 pages, Latex, includes 4 figures (encapsulated postscript), Fig. 1 has 2 parts and Fig. 2 has 3 parts, to appear in the Astrophysical Journa

    Preconditioning for the mixed formulation of linear plane elasticity

    Get PDF
    In this dissertation, we study the mixed finite element method for the linear plane elasticity problem and iterative solvers for the resulting discrete system. We use the Arnold-Winther Element in the mixed finite element discretization. An overlapping Schwarz preconditioner and a multigrid preconditioner for the discrete system are developed and analyzed. We start by introducing the mixed formulation (stress-displacement formulation) for the linear plane elasticity problem and its discretization. A detailed analysis of the Arnold-Winther Element is given. The finite element discretization of the mixed formulation leads to a symmetric indefinite linear system. Next, we study efficient iterative solvers for the symmetric indefinite linear system which arises from the mixed finite element discretization of the linear plane elasticity problem. The preconditioned Minimum Residual Method is considered. It is shown that the problem of constructing a preconditioner for the indefinite linear system can be reduced to the problem of constructing a preconditioner for the H(div) problem in the Arnold-Winther finite element space. Our main work involves developing an overlapping Schwarz preconditioner and a multigrid preconditioner for the H(div) problem. We give condition number estimates for the preconditioned systems together with supporting numerical results

    Adverse events in people taking macrolide antibiotics versus placebo for any indication

    Get PDF
    BACKGROUND: Macrolide antibiotics (macrolides) are among the most commonly prescribed antibiotics worldwide and are used for a wide range of infections. However, macrolides also expose people to the risk of adverse events. The current understanding of adverse events is mostly derived from observational studies, which are subject to bias because it is hard to distinguish events caused by antibiotics from events caused by the diseases being treated. Because adverse events are treatment-specific, rather than disease-specific, it is possible to increase the number of adverse events available for analysis by combining randomised controlled trials (RCTs) of the same treatment across different diseases. OBJECTIVES:To quantify the incidences of reported adverse events in people taking macrolide antibiotics compared to placebo for any indication. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), which includes the Cochrane Acute Respiratory Infections Group Specialised Register (2018, Issue 4); MEDLINE (Ovid, from 1946 to 8 May 2018); Embase (from 2010 to 8 May 2018); CINAHL (from 1981 to 8 May 2018); LILACS (from 1982 to 8 May 2018); and Web of Science (from 1955 to 8 May 2018). We searched clinical trial registries for current and completed trials (9 May 2018) and checked the reference lists of included studies and of previous Cochrane Reviews on macrolides. SELECTION CRITERIA: We included RCTs that compared a macrolide antibiotic to placebo for any indication. We included trials using any of the four most commonly used macrolide antibiotics: azithromycin, clarithromycin, erythromycin, or roxithromycin. Macrolides could be administered by any route. Concomitant medications were permitted provided they were equally available to both treatment and comparison groups. DATA COLLECTION AND ANALYSIS: Two review authors independently extracted and collected data. We assessed the risk of bias of all included studies and the quality of evidence for each outcome of interest. We analysed specific adverse events, deaths, and subsequent carriage of macrolide-resistant bacteria separately. The study participant was the unit of analysis for each adverse event. Any specific adverse events that occurred in 5% or more of any group were reported. We undertook a meta-analysis when three or more included studies reported a specific adverse event. MAIN RESULTS: We included 183 studies with a total of 252,886 participants (range 40 to 190,238). The indications for macrolide antibiotics varied greatly, with most studies using macrolides for the treatment or prevention of either acute respiratory tract infections, cardiovascular diseases, chronic respiratory diseases, gastrointestinal conditions, or urogynaecological problems. Most trials were conducted in secondary care settings. Azithromycin and erythromycin were more commonly studied than clarithromycin and roxithromycin.Most studies (89%) reported some adverse events or at least stated that no adverse events were observed.Gastrointestinal adverse events were the most commonly reported type of adverse event. Compared to placebo, macrolides caused more diarrhoea (odds ratio (OR) 1.70, 95% confidence interval (CI) 1.34 to 2.16; low-quality evidence); more abdominal pain (OR 1.66, 95% CI 1.22 to 2.26; low-quality evidence); and more nausea (OR 1.61, 95% CI 1.37 to 1.90; moderate-quality evidence). Vomiting (OR 1.27, 95% CI 1.04 to 1.56; moderate-quality evidence) and gastrointestinal disorders not otherwise specified (NOS) (OR 2.16, 95% CI 1.56 to 3.00; moderate-quality evidence) were also reported more often in participants taking macrolides compared to placebo.The number of additional people (absolute difference in risk) who experienced adverse events from macrolides was: gastrointestinal disorders NOS 85/1000; diarrhoea 72/1000; abdominal pain 62/1000; nausea 47/1000; and vomiting 23/1000.The number needed to treat for an additional harmful outcome (NNTH) ranged from 12 (95% CI 8 to 23) for gastrointestinal disorders NOS to 17 (9 to 47) for abdominal pain; 19 (12 to 33) for diarrhoea; 19 (13 to 30) for nausea; and 45 (22 to 295) for vomiting.There was no clear consistent difference in gastrointestinal adverse events between different types of macrolides or route of administration.Taste disturbances were reported more often by participants taking macrolide antibiotics, although there were wide confidence intervals and moderate heterogeneity (OR 4.95, 95% CI 1.64 to 14.93; Iand#178; = 46%; low-quality evidence).Compared with participants taking placebo, those taking macrolides experienced hearing loss more often, however only four studies reported this outcome (OR 1.30, 95% CI 1.00 to 1.70; Iand#178; = 0%; low-quality evidence).We did not find any evidence that macrolides caused more cardiac disorders (OR 0.87, 95% CI 0.54 to 1.40; very low-quality evidence); hepatobiliary disorders (OR 1.04, 95% CI 0.27 to 4.09; very low-quality evidence); or changes in liver enzymes (OR 1.56, 95% CI 0.73 to 3.37; very low-quality evidence) compared to placebo.We did not find any evidence that appetite loss, dizziness, headache, respiratory symptoms, blood infections, skin and soft tissue infections, itching, or rashes were reported more often by participants treated with macrolides compared to placebo.Macrolides caused less cough (OR 0.57, 95% CI 0.40 to 0.80; moderate-quality evidence) and fewer respiratory tract infections (OR 0.70, 95% CI 0.62 to 0.80; moderate-quality evidence) compared to placebo, probably because these are not adverse events, but rather characteristics of the indications for the antibiotics. Less fever (OR 0.73, 95% 0.54 to 1.00; moderate-quality evidence) was also reported by participants taking macrolides compared to placebo, although these findings were non-significant.There was no increase in mortality in participants taking macrolides compared with placebo (OR 0.96, 95% 0.87 to 1.06; Iand#178; = 11%; low-quality evidence).Only 24 studies (13%) provided useful data on macrolide-resistant bacteria. Macrolide-resistant bacteria were more commonly identified among participants immediately after exposure to the antibiotic. However, differences in resistance thereafter were inconsistent.Pharmaceutical companies supplied the trial medication or funding, or both, for 91 trials. AUTHORS' CONCLUSIONS: The macrolides as a group clearly increased rates of gastrointestinal adverse events. Most trials made at least some statement about adverse events, such as "none were observed". However, few trials clearly listed adverse events as outcomes, reported on the methods used for eliciting adverse events, or even detailed the numbers of people who experienced adverse events in both the intervention and placebo group. This was especially true for the adverse event of bacterial resistance.</p
    corecore