research

Intrinsic Absorption Lines in Seyfert 1 Galaxies. I. Ultraviolet Spectra from the Hubble Space Telescope

Abstract

We present a study of the intrinsic absorption lines in the ultraviolet spectra of Seyfert 1 galaxies. We find that the fraction of Seyfert 1 galaxies that show absorption associated with their active nuclei is more than one-half (10/17), which is much higher than previous estimates (3 - 10%) . There is a one-to-one correspondence between Seyferts that show intrinsic UV absorption and X-ray ``warm absorbers''. The intrinsic UV absorption is generally characterized by high ionization: C IV and N V are seen in all 10 Seyferts with detected absorption (in addition to Ly-alpha), whereas Si IV is present in only four of these Seyferts, and Mg II absorption is only detected in NGC 4151. The absorption lines are blueshifted (or in a few cases at rest) with respect to the narrow emission lines, indicating that the absorbing gas is undergoing net radial outflow. At high resolution, the absorption often splits into distinct kinematic components that show a wide range in widths (20 - 400 km/s FWHM), indicating macroscopic motions (e.g., radial velocity subcomponents or turbulence) within a component. The strong absorption components have cores that are much deeper than the continuum flux levels, indicating that the regions responsible for these components lie completely outside of the broad emission-line regions. The covering factor of the absorbing gas in the line of sight, relative to the total underlying emission, is C > 0.86, on average. The global covering factor, which is the fraction of emission intercepted by the absorber averaged over all lines of sight, is C > 0.5.Comment: 56 pages, Latex, includes 4 figures (encapsulated postscript), Fig. 1 has 2 parts and Fig. 2 has 3 parts, to appear in the Astrophysical Journa

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020